ÀÃÐÀÐÍÈ ÍÀÓÊÈ
Àãðàðåí óíèâåðñèòåò
Ïëîâäèâ
Agricultural University
Plovdiv
AGRICULTURAL SCIENCES
Ãîäèíà II Áðîé 4
Ïëîâäèâ 2010
Àêàäåìè÷íî èçäàòåëñòâî íà Àãðàðíèÿ óíèâåðñèòåò
Volume II Issue 4
Plovdiv 2010
Academic Publishing House of the Agricultural University
2
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Ðåäàêöèîííà êîëåãèÿ
Ãë. ðåäàêòîð - ïðîô. äñí Èâàíêà Ëå÷åâà
Çàì.-ãë. ðåäàêòîð - ïðîô. äñí Äèàíà Ñâåòëåâà
Oòãîâîðåí ðåäàêòîð - Òàíÿ Öâåòêîâñêà
×ëåíîâå
×ë.-êîð. ïðîô. äñí Éîðäàíêà Êóçìàíîâà
Ïðîô. äñí Ñëàâ÷î Ïàíäåëèåâ
Ïðîô. äõí Êðàñèìèð Èâàíîâ
Ïðîô. äñí Àëåêñè Ñòîéêîâ
Äîö. ä-ð Êðàñèìèð Ìèõîâ
Äîö. ä-ð Áîðèñ ßíêîâ
Äîö. ä-ð Âàëåíòèí Ëè÷åâ
Äîö. ä-ð Âàñêî Êîïðèâëåíñêè
Äîö. ä-ð Àëåêñè Àëåêñèåâ
Äîö. ä-ð Äèàíà Êèðèí
Äîö. ä-ð Èâàí Áðàéêîâ
Ìåæäóíàðîäíà ðåäàêöèîííà êîëåãèÿ
Ïðîô. Ì. Åëèîò
Ïðîô. Ê. Êîðêóò
Ïðîô. K. Õàãåäîðí
Ïðîô. Å. Êèïðèîòèñ
Ïðîô. Í. Øåíêüîéëþ
Äîö. ä-ð ß. Êîíÿ
ÀÃÐÀÐÍÈ ÍÀÓÊÈ
Ãë. ðåäàêòîð - ïðîô. äñí Èâàíêà Ëå÷åâà
Oòãîâîðåí ðåäàêòîð - Òàíÿ Öâåòêîâñêà
Ðåäàêòèðàíå íà àíãëèéñêèòå ðåçþìåòà - Âàíÿ Ñèìåîíîâà
Ïðåäïå÷àòíà ïîäãîòîâêà - Àíòîàíåòà Ñëàâîâà
Ôîðìàò - 16/60õ84
Ïå÷àòíè êîëè - 7,25
Àêàäåìè÷íî èçäàòåëñòâî íà Àãðàðíèÿ óíèâåðñèòåò
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ, áóë. “Ìåíäåëååâ” ¹ 12
www.au-plovdiv.bg Å-mail: agrarninauki@abv.bg; agrarninauki@au-plovdiv.bg
© Àãðàðíè íàóêè, 2010
ISSN 1313-6577
Editorial Board
Editor-in-Chief - Prof. Ivanka Lecheva, DSc
Deputy-Editor-in-Chief - Prof. Diana Svetleva, DSc
Executive Editor - Tania Tsvetkovska
Members
Correspondent member of BAS Prof. Iordanka Kouzmanova, DSc
Prof. Slavcho Pandeliev, Dsc
Prof. Krassimir Ivanov, DSc
Prof. Alexi Stoykov, DSc
Assoc. Prof. Krassimir Mihov, PhD
Assoc. Prof. Boris Yankov, PhD
Assoc. Prof. Valentin Lichev, PhD
Assoc. Prof. Vasko Koprivlenski, PhD
Assoc. Prof. Alexi Alexiev, PhD
Assoc. Prof. Diana Kirin, PhD
Assoc. Prof. Ivan Braykov, PhD
International Editorial Board
Prof. Ì. Elliott
Prof. Ê. Korkut
Prof. K. Hagedorn
Prof. Å. Kipriotis
Prof. N. Shenkyoylu
Äîö. ä-ð J. Konya
Ñïèñàíèå Àãðàðíè íàóêè å èçäàíèå íà Àãðàðíèÿ óíèâåðñèòåò - Ïëîâäèâ.
 ñïèñàíèåòî ñå ïóáëèêóâàò îðèãèíàëíè èçñëåäîâàòåëñêè ñòàòèè, êðàòêè ñúîáùåíèÿ è îáçîðè
îò âñè÷êè îáëàñòè íà ðàñòåíèåâúäñòâîòî è æèâîòíîâúäñòâîòî íà áúëãàðñêè è íà àíãëèéñêè åçèê.
AGRICULTURAL SCIENCES
Editor-in-Chief - Prof. Ivanka Lecheva, DSc
Executive Editor - Tania Tsvetkovska
Editor of the English Abstracts - Vania Simeonova
Pre-printing - Antoaneta Slavova
Format - 16/60õ84
Quires - 7.25
Academic Publishing House of the Agricultural University
Agricultural Sciences is a journal of the Agricultural University - Plovdiv.
Original research papers, brief reports and reviews in all the areas of crop science and animal
breeding and husbandry are published in the journal in Bulgarian and in English.
Ñïèñàíèå “Àãðàðíè íàóêè” ñå ðåôåðèðà ïúëíî â CAB abstracts è ÷àñòè÷íî â îùå 30 äðóãè áàçè
äàííè íà CAB International
The Agricultural Sciences journal is fully referred to in CAB Abstracts and partially – in other 30
databases of CAB International
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
3
ÑÚÄÚÐÆÀÍÈÅ
Âàñèëèé Ãîëöåâ, Èâàí Éîðäàíîâ, Ìàðèÿ Ãóðìàíîâà, Èâàí Ïåøåâ, Ðåòî Éîðã Ñòðàñåð.
Òåìïåðàòóðíîèíäóöèðàíè ïðåõîäè âúâ ôîòîñèíòåòè÷íèÿ àïàðàò íà ôàñóëåâè ðàñòåíèÿ, èçñëåäâàíè ïî
ïàðàìåòðèòå íà JIP òåñòà .................................................................................................................................................7
Âàñèëèé Ãîëöåâ, Èâàí Éîðäàíîâ, Ìàðèÿ Ãóðìàíîâà, Ìàðãàðèòà Êóçìàíîâà, Ùåðÿí Äàìáîâ,
Ñîíÿ Àïîñòîëîâà, Ãåðãàíà Ñàâîâà, Ðåòî Éîðã Ñòðàñåð. Âúçìîæíîñòè íà íîâèÿ ìóëòèôóíêöèîíàëåí
àíàëèçàòîð íà åôåêòèâíîñòòà íà ðàñòåíèÿòà çà èçñëåäâàíå íà ôóíêöèîíàëíîòî ñúñòîÿíèå íà ôîòîñèíòåòè÷íèÿ
àïàðàò ...............................................................................................................................................................................15
Ëþèñà Êàðâàëõî, Ñîíÿ Ñàíòîñ, Èîðãå Âèëåëà, Ñàðà Àìàíöèî. Äèíàìèêà íà àíòèîêèñëèòåëíèÿ îòãîâîð íà in
vitro ðàñòåíèÿ, ïîäëîæåíè íà ñâåòëèíåí ñòðåñ ..............................................................................................................27
ßöåê Âðóáåë, Ìàëãîæàòà Ìèêè÷óê, Êàòàæèíà Ìàëèíîâñêà, Àðëåòà Äðîçä. Ôèçèîëîãè÷íà ðåàêöèÿ íà
Salix viminalis â óñëîâèÿòa íà àíòðîïîãåíåí ñòðåñ ........................................................................................................33
Ìàëãîæàòà Ìèêè÷óê, Êàòàæèíà Ìàëèíîâñêà, ßöåê Âðóáåë, Óðøóëà ×èæåâñêà. Ôèçèîëîãè÷åí îòãîâîð íà
ãëàâåñòàòà ñàëàòà (Lactuca sativa var. capitata) êúì çàñîëÿâàíå ..................................................................................37
Ìèðîñëàâà Êàéìàêàíîâà, Ëþäìèëà Ëþáåíîâà, Ïåòåð Øðüîäåð, Íåâåíà Ñòîåâà, Äîáðèíêà Áàëàáàíîâà. Åôåêò
íà çàñîëÿâàíåòî âúðõó àêòèâíîñòòà íà àíòèîêèñëèòåëíè åíçèìè â ëèñòà è êîðåíè îò ôàñóë (Phaseolus vulgaris L.) .41
Êàòàæèíà Ìàëèíîâñêà, ßöåê Âðóáåë, Ðèøàðä Ìàëèíîâñêè, Àíäæåé Ñòåðà. Òîêñè÷íî âúçäåéñòâèå íà îëîâîòî
âúðõó ôèçèîëîãè÷íèòå ïàðàìåòðè íà âúðáà (Salix viminalis L.) ....................................................................................45
Àíäîí Âàñèëåâ, Ìàëãîæàòà Áåðîâà, Íåâåíà Ñòîåâà, Çëàòêî Çëàòåâ, Íèêîëàé Äèíåâ. Ìåòàëíà
ôèòîòîêñè÷íîñò - ïîäõîäÿùè èíäèêàòîðè è òåñòîâå çà åêîòîêñèêîëîãè÷íà îöåíêà íà çàìúðñåíè ïî÷âè ................51
Àíäîí Âàñèëåâ, Çëàòêî Çëàòåâ, Ìàëãîæàòà Áåðîâà, Íåâåíà Ñòîåâà. Òîëåðàíòíîñò íà ðàñòåíèÿòà êúì
çàñóøàâàíå è âèñîêè òåìïåðàòóðè - ôèçèîëîãè÷íè ìåõàíèçìè è ïîäõîäè çà ïîäáîð íà òîëåðàíòíè ãåíîòèïîâå ..59
Âèîëåòà Áîæàíîâà, Áîðÿíà Õàäæèèâàíîâà. Ñïîñîáíîñò çà îñìîðåãóëàöèÿ ïðè òâúðäà ïøåíèöà, îòäàëå÷åíè
âèäîâå è õèáðèäè ìåæäó òÿõ ..........................................................................................................................................65
Âèîëåòà Áîæàíîâà, Äå÷êî Äå÷åâ. Âëèÿíèå íà çàñóøàâàíåòî âúðõó âàðèðàíåòî è êîðåëàöèèòå íà êîëè÷åñòâåíè
ïðèçíàöè ïðè òâúðäà ïøåíèöà .......................................................................................................................................69
Çëàòêî Çëàòåâ, Àíäîí Âàñèëåâ, Âàñèëèé Ãîëöåâ, Ãåîðãè Ïîïîâ. Ïðîìåíè â õëîðîôèëíàòà ôëóîðåñöåíöèÿ íà
ìëàäè ðàñòåíèÿ îò ôàñóë ïðè çàñóøàâàíå ....................................................................................................................75
Íåâåíà Ñòîåâà, Ìàëãîæàòà Áåðîâà, Çëàòêî Çëàòåâ, Ìèðîñëàâà Êàéìàêàíîâà, Ëþáêà Êîëåâà,
Äàíèåëà Ãàíåâà. Ôèçèîëîãè÷åí òåñò çà îöåíêà íà ãåíîòèïíàòà òîëåðàíòíîñò íà äîìàòè (Solanum lycopersicum)
êúì âîäåí ñòðåñ ...............................................................................................................................................................81
Ìèíêà Êîëåâà, Àíäîí Âàñèëåâ. Âëèÿíèå íà ïî÷âåíîòî çàñóøàâàíå âúâ ôåíîôàçà öúôòåæ–ïëîäîîáðàçóâàíå
âúðõó ïðîäóêòèâíîñòòà íà òðè ñîðòà ïàìóê ...................................................................................................................85
Âàëåíòèíà Ïåòêîâà, Âåñåëèíà Íèêîëîâà, Âåëè÷êà Òîäîðîâà, Âåñåëèíà Ñòîåâà, Åëåíà Òîïàëîâà. Ðåàêöèÿ íà
ôîòîñèíòåòè÷íèÿ àïàðàò è ìúæêèÿ ãàìåòîôèò ïðè ïèïåð (Capsicum annuum L.) êúì ðàçëè÷íè âèñîêîòåìïåðàòóðíè
ðåæèìè .............................................................................................................................................................................89
Ëèëÿíà Íà÷åâà, Çàðÿ Ðàíêîâà, Ïåòÿ Ãåð÷åâà. In vitro ìîäåëíà ñèñòåìà çà îöåíêà íà ñòðåñîâèÿ îòãîâîð íà
îâîùíè ðàñòåíèÿ êúì òðåòèðàíå ñ ïî÷âåíè õåðáèöèäè ................................................................................................93
Ìàðöåëèíà Êðóïà-Ìàëêåâè÷, Àðëåòà Äðîçä, Ìèëîø Ñìîëèê, Êàòàæèíà Ëèíõàðò. Âëèÿíèå íà õèìè÷íè
ìóòàãåíè âúðõó ìîðôîëîãè÷íè áåëåçè â Ì3 ïîêîëåíèå íà ïåòóíèÿ (Petunia x Atkinsiana D. Don) ............................97
Ìàðãàðèòà Êóçìàíîâà, Ìàðèÿ Ãóðìàíîâà, Ñàâèíà Òèí÷åâà, Âàñèëèé Ãîëöåâ, Ãàáðèåëà Àòàíàñîâà,
Íèêîëàé Àòàíàñîâ. Âëèÿíèå íà GSM900 åëåêòðîìàãíèòíè ïîëåòà âúðõó ïàðàìåòðè íà õëîðîôèëíàòà
ôëóîðåñöåíöèÿ ïðè êóëòóðíèòå ðàñòåíèÿ ïøåíèöà, öàðåâèöà è ãðàõ ......................................................................101
Ìàðãàðèòà Êóçìàíîâà, Ìèëåíà Äèìèòðîâà, Äàíèåëà Äðàãîëîâà, Ãàáðèåëà Àòàíàñîâà, Íèêîëàé Àòàíàñîâ.
Âëèÿíèå íà ïðîäúëæèòåëíî îáëú÷âàíå ñ GSM900 åëåêòðîìàãíèòíè ïîëåòà âúðõó åíçèìíàòà àêòèâíîñò â ëèñòà îò
ãðàõ (Pisum sativum L.) ..................................................................................................................................................109
4
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
CONTENTS
Vasilij Goltsev, Ivan Yordanov, Maria Gurmanova, Ivan Peshev, Reto Jorg Strasser. Temperature-induced
Transitions in Photosynthetic Apparatus of Bean Plants Probed by JIP-test ...................................................................... 7
Vasilij Goltsev, Ivan Yordanov, Maria Gurmanova, Margarita Kouzmanova, Shteryan Dambov, Sonia Apîstîlova,
Gergana Savova, Reto Jorg Strasser. Multifunctional Plant Efficiency Analyzer mPEA Used to Describe the
Physiological States of the Photosynthetic Apparatus ....................................................................................................... 15
Luisa C. Carvalho, Sonia Santos, B. Jorge Vilela, Sara Amancio. Different Timings of Antioxidative Response of
in vitro Propagated Plants under Light Stress .................................................................................................................... 27
Jacek Wrobel, Malgorzata Mikiciuk, Katarzyna Malinowska, Arleta Drozd. Physiological Reaction of Salix viminalis to
Stress of Anthropogenic Origin ......................................................................................................................................... 33
Malgorzata Mikiciuk, Katarzyna Malinowska, Jacek Wrobel, Urszula Czyzewska. A Physiological Response of the
Head Lettuce (Lactuca sativa var. capitata) on the Salinity ............................................................................................... 37
Miroslava Kaymakanova, Lyudmila Lyubenova, Peter Schroder, Nevena Stoeva, Dobrinka Balabanova. Salinity
Effect on Antioxidant Enzymes in Leaves and Roots of Beans (Phaseolus vulgaris L.) ................................................... 41
Katarzyna Malinowska, Jacek Wrobel, Ryszard Malinowski, Andrzej Stera. The Toxic Impact of Lead on the
Physiological Parameters of Basket Willow (Salix viminalis L.) ......................................................................................... 45
Andon Vassilev, Malgorzata Berova, Nevena Stoeva, Zlatko Zlatev, Nikolay Dinev. Metal Phytotoxicity: Suitable
Indicators and Tests for Ecotoxicological Evaluation of Contaminated Soils ..................................................................... 51
Andon Vassilev, Zlatko Zlatev, Malgorzata Berova, Nevena Stoeva. Plant Tolerance to Drought and High
Temperatures: Physiological Mechanisms and Approaches for Screening for Tolerant Genotypes .................................. 59
Violeta Bozhanova, Borjana Hadzhiivanova. Osmotic Adjustment Ability in Durum Wheat, Distant Species and their
Hybrids .............................................................................................................................................................................. 65
Violeta Bozhanova, Dechko Dechev. Influence of Drougth on Variation and Corellations Ships of Quantatives Traits in
Durum Wheat .................................................................................................................................................................... 69
Zlatko Zlatev, Andon Vassilev, Vasilii Goltsev, Georgi Popov. Drought-Induced Changes in Chlorophyll Fluorescence
of Young Bean Plants ........................................................................................................................................................ 75
Nevena Stoeva, Malgorzata Berova, Zlatko Zlatev, Miroslava Kaymakanova, Lyubka Koleva, Daniela Ganeva.
Physiological Test for Evaluation of Genotypes Tolerance of Tomato (Solanum lycopersicum) to Water Stress .............. 81
Minka Koleva, Andon Vassilev. Influence of Soil Drought during Flowering-Boll Formation Stage on the Productivity of
Three Cotton Cultivars ...................................................................................................................................................... 85
Valentina Petkova, Vesselina Nikolova, Velichka Todorova, Vesselina Stoeva, Elena Topalova. Response of the
Photosynthetic Apparatus and Male Gametophyte of Pepper Plants (Capsicum annuum L.) to Various High Temperature
Regimes ............................................................................................................................................................................ 89
Lilyana Nacheva, Zarya Rankova, Petya Gercheva. In Vitro Model System for Evaluation of Fruit Plants Stress
Responses to Soil Herbicide Treatment ............................................................................................................................ 93
Marcelina Krupa-Ma³kiewicz, Arleta Drozd, Milosz Smolik, Katarzyna Linhart. The Influence of Chemical Mutagens
on Morphological Traits In M3 Generation of Petunia (Petunia x Atkinsiana D. Don) ........................................................ 97
Margarita Kouzmanova, Maria Gurmanova, Savina Tincheva, Vasilij Goltsev, Gabriela Atanasova,
Nikolai Atanassov. Effects of GSM900 Electromagnetic Fields on some Parameters of Chlorophyll Fluorescence in
Crop Plants Wheat, Maize and Peas ............................................................................................................................... 101
Margarita Kouzmanova, Milena Dimitrova, Daniela Dragolova, Gabriela Atanassova, Nikolai Atanassov. Effects of
Prolonged Exposure to GSM900 Electromagnetic Fields on Enzyme Activity in Leaves of Peas (Pisum sativum L.) ... 109
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
5
ÍÀÓ×ÅÍ ÑÅÌÈÍÀÐ Â ÀÃÐÀÐÍÈß ÓÍÈÂÅÐÑÈÒÅÒ
 òîçè áðîé íà ñïèñàíèå “Àãðàðíè íàóêè” ñà ïóáëèêóâàíè èçáðàíè äîêëàäè è ïîñòåðíè ïðåçåíòàöèè,
ïðåäñòàâåíè íà íàó÷íèÿ ñåìèíàð íà òåìà “Èçñëåäâàíå íà ñòðåñîâè îòãîâîðè è ïîäáîð íà òîëåðàíòíè ãåíîòèïîâå
ïðè îñíîâíè ñåëñêîñòîïàíñêè êóëòóðè”, ïðîâåäåí íà 11-12 þíè 2010 ã. â Àãðàðíèÿ óíèâåðñèòåò – Ïëîâäèâ.
Íàó÷íèÿò ñåìèíàð áåøå îðãàíèçèðàí îò Àãðàðíèÿ óíèâåðñèòåò è áåøå ïîñâåòåí íà íåãîâèÿ 65-ãîäèøåí
þáèëåé.
Îñíîâíèòå öåëè íà ñåìèíàðà áÿõà: (1) äà ñå ñðåùíàò áúëãàðñêè ïðåäñòàâèòåëè íà àãðàðíàòà íàóêà,
çàíèìàâàùè ñå ñ ïðîáëåìèòå íà ñòðåñà ïðè îñíîâíèòå ñåëñêîñòîïàíñêè êóëòóðè, ñ áúëãàðñêè è ÷óæäåñòðàííè ó÷åíè
– áèîëîçè è áèîôèçèöè, ðàçðàáîòâàùè òåîðåòè÷íèòå ìîëåêóëíî-ãåíåòè÷íè è ôèçèîëîãè÷íè îñíîâè íà ñòðåñîâîòî
ïîâåäåíèå íà ðàñòåíèÿòà è ñúçäàâàùè ÷óâñòâèòåëíè ìåòîäè çà òåñòèðàíå íà òÿõíàòà òîëåðàíòíîñò êúì
íåáëàãîïðèÿòíèòå ôàêòîðè íà ñðåäàòà; (2) äà ñå îáìåíÿò èíôîðìàöèÿ è èäåè ìåæäó ó÷åíè è ïðåäñòàâèòåëè íà
áèçíåñà, ñíàáäÿâàùè èçñëåäîâàòåëèòå ñúñ ñúâðåìåííà íàó÷íà àïàðàòóðà.
Ñåìèíàðúò áåøå ïðîâåäåí ñ àêòèâíîòî ó÷àñòèå íà êîëåêòèâèòå íà Êàòåäðàòà ïî ôèçèîëîãèÿ íà ðàñòåíèÿòà
è áèîõèìèÿ îò Àãðàðíèÿ óíèâåðñèòåò â Ïëîâäèâ è íà Êàòåäðàòà ïî áèîôèçèêà è ðàäèîáèîëîãèÿ îò Ñîôèéñêèÿ
óíèâåðñèòåò “Ñâ. Êëèìåíò Îõðèäñêè”. Ëåêòîðè íà ñåìèíàðà áÿõà ïðîô. ä-ð Äæàêî Âàíãðîíñâåëä – Äîêòîð õîíîðèñ
êàóçà íà Àãðàðíèÿ óíèâåðñèòåò (Õàñåëòñêè óíèâåðñèòåò, Áåëãèÿ), ïðîô. ä-ð Ðåòî Ñòðàñåð (Æåíåâñêè óíèâåðñèòåò,
Øâåéöàðèÿ), ïðîô. ä-ð ßöåê Âðóáåë (Òåõíîëîãè÷åí óíèâåðñèòåò, Ø÷å÷èí, Ïîëøà) è ä-ð Ñàðà Àìàíñèî - âîäåù
èçñëåäîâàòåë îò Èíñòèòóòà ïî àãðîíîìñòâî â ãð. Ëèñàáîí, Ïîðòóãàëèÿ.  ñåìèíàðà âçåõà ó÷àñòèå ó÷åíè îò
Ñåëñêîñòîïàíñêàòà àêàäåìèÿ (Èíñòèòóò ïî çåëåí÷óêîâè êóëòóðè “Ìàðèöà”, Èíñòèòóò ïî îâîùàðñòâî – Ïëîâäèâ,
Èíñòèòóò ïî ïàìóêà è òâúðäàòà ïøåíèöà – ×èðïàí, è äð.), äîêòîðàíòè è ñòóäåíòè.
Îðãàíèçàòîðèòå íà íàó÷íèÿ ñåìèíàð èçêàçâàò ñâîÿòà äúëáîêà áëàãîäàðíîñò íà Ôîíä “Íàó÷íè èçñëåäâàíèÿ”
çà îêàçàíàòà ôèíàíñîâà ïîäêðåïà (ïðîåêòè DO 02-88/2008, DO 02-137/2008), êàêòî è íà ôèðìèòå Ëàáêî ÅÎÎÄ,
Merck EAD è Aquachim çà ïðåäñòàâåíàòà íîâà íàó÷íà àïàðàòóðà çà èçñëåäâàíèÿ â îáëàñòòà íà ñòðåñà ïðè ðàñòåíèÿòà.
Ïîðàäè ñïåöèàëèçèðàíèÿ õàðàêòåð íà îòïå÷àòàíèòå â òîçè áðîé ñòàòèè Ðåäàêöèîííàòà êîëåãèÿ íà ñïèñàíèå
“Àãðàðíè íàóêè” ïðåäîñòàâè ïðàâîòî çà ðåöåíçèðàíå íà åêèï îò ãîñò-ðåäàêòîðè, âêëþ÷âàù äîö. ä-ð Àíäîí Âàñèëåâ,
äîö. ä-ð Âàñèëèé Ãîëöåâ, äîö. ä-ð Ìàëãîæàòà Áåðîâà, äîö. ä-ð Íåâåíà Ñòîåâà è äîö. ä-ð Çëàòêî Çëàòåâ.
Äîö. ä-ð Àíäîí Âàñèëåâ
Äîö. ä-ð Âàñèëèé Ãîëöåâ
6
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
SCIENTIFIC WORKSHOP IN THE AGRICULTURAL UNIVERSITY
Some selected papers and poster presentations are published in the present issue of Agricultural Sciences.
They were presented at the scientific workshop on INVESTIGATIONS OF SOME STRESS RESPONSES AND SELECTION
OF TOLERANT GENOTYPES IN BASIC AGRICULTURAL CROPS, held on 11th and 12th June 2010 at the Agricultural
University in Plovdiv.
The workshop was organized by the Agricultural University in Plovdiv and was held on the occasion of its 65th
jubilee.
The major goals of the workshop were as follows: (1) to get together Bulgarian representatives of agricultural
science, involved with the issues of stress in the basic agricultural crops, with Bulgarian and foreign scientists – biologists
and biophysicists who are working out the theoretical molecular-genetic and physiological fundamentals of plant stress
behaviour and creating sensitive methods for testing plant tolerance to adverse environmental factors; (2) to exchange
information and ideas among scientists and business-world representatives who supply the investigators with modern
scientific apparatuses.
The workshop took place with the active participation of the staff from the Department of Plant Physiology and
Biochemistry of the Agricultural University in Plovdiv and the Department of Biophysics and Radiobiology of Sofia University.
The invited lecturers were Professor Jaak Vangronsveld (Hasselt University, Belgium) – awarded Doctor Honoris Causa by
the Agricultural University, Professor Reto J.Strasser (University of Geneva, Switzerland), Professor Jacek Wróbel (West
Pomeranian University of Technology in Szczecin, Poland) and Dr Sara Amâncio - a leading researcher at the Instituto
Superior de Agronomia in Lisbon, Portugal. Scientists from the Agricultural Academy (the Maritsa Vegetable Crops Research
Institute, the Fruit Growing Institute in Plovdiv, the Cotton and Durum Wheat Research Institute in Chirpan, etc.), doctoral
and undergraduate students took part in the workshop.
The organizing committee would like to express their gratitude to the National Science Fund for the financial
support (projects: DO02-88/2008; DO02-137/2008), as well as to Labko Ltd, Merck Ltd and Aquachim for the presented
new scientific apparatuses meant for the study of plant stress.
Because of the specialized character of the published material in the present issue of the journal, the Editorial
Board of Agricultural Sciences have granted the right to peer reviewing to a team of guest-editors, as follows: assoc. prof.
Andon Vassilev, PhD, Assoc. prof. Vasilij Goltsev, PhD, assoc. prof. Ma³gorzata Berova, PhD, assoc. prof. Nevena Stoeva,
PhD, and assoc. prof. Zlatko Zlatev, PhD.
Assoc. prof. Andon Vassilev, PhD
Assoc. prof. Vasilij Goltsev, PhD
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
7
ÒÅÌÏÅÐÀÒÓÐÍÎÈÍÄÓÖÈÐÀÍÈ ÏÐÅÕÎÄÈ ÂÚ ÔÎÒÎÑÈÍÒÅÒÈ×ÍÈß ÀÏÀÐÀÒ ÍÀ ÔÀÑÓËÅÂÈ ÐÀÑÒÅÍÈß,
ÈÇÑËÅÄÂÀÍÈ ÏÎ ÏÀÐÀÌÅÒÐÈÒÅ ÍÀ JIP ÒÅÑÒÀ
TEMPERATURE-INDUCED TRANSITIONS IN PHOTOSYNTHETIC APPARATUS OF BEAN PLANTS PROBED BY
JIP-TEST
Âàñèëèé Ãîëöåâ1*, Èâàí Éîðäàíîâ2, Ìàðèÿ Ãóðìàíîâà1, Èâàí Ïåøåâ1, Ðåòî Éîðã Ñòðàñåð3
Vasilij Goltsev1*, Ivan Yordanov2, Maria Gurmanova1, Ivan Peshev1, Reto Jorg Strasser3
1ÑÓ “Ñâ. Êëèìåíò Îõðèäñêè”, Áèîëîãè÷åñêè ôàêóëòåò , Ñîôèÿ
2Èíñòèòóò ïî Ôèçèîëîãèÿ íà ðàñòåíèÿòà „Ìåòîäè Ïîïîâ”, ÁÀÍ, Ñîôèÿ
3Ëàáîðàòîðèÿ ïî áèîåíåðãåòèêà, Æåíåâñêè óíèâåðñèòåò, Æåíåâà, Øâåéöàðèÿ
1*St. Kliment Ohridski University of Sofia, Faculty of Biology, Sofia, Bulgaria
2Methody Popov Institute of Plant Physiology, BAS, Sofia, Bulgaria
3Bioenergetics Laboratory, University of Geneva, Jussy-Geneva, Switzerland
*Email: goltsev@biofac.uni-sofia.bg
Ðåçþìå
Ðåàêöèÿòà íà ôîòîñèíòåòè÷íèÿ àïàðàò íà âèñøèòå ðàñòåíèÿ êúì âèñîêî- è íèñêîòåìïåðàòóðåí ñòðåñ ìîæå
äà ñå àíàëèçèðà ñ ïîìîùòà íà JIP òåñò. Ñåãìåíòè îò ïúðâè÷íèòå ëèñòà îò äåêàïèòèðàíè ôàñóëåâè ðàñòåíèÿ ñà
ïîñòàâÿíè âúðõó òåìïåðèðàíà ìåòàëíà ïëàñòèíà íà òåðìîáëîê ñ òåìïåðàòóðè 10, 5 è 0°Ñ (íèñêîòåìïåðàòóðåí ñêîê)
èëè 30, 35 37.5, 40, 42.5, 45, 47.5 è 50°Ñ (âèñîêîòåìïåðàòóðåí ñêîê) è â ïðîäúëæåíèå íà 20 min ïðåç 30 s ñà çàïèñâàíè
1-ñåêóíäíè OJIP êðèâè íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ è ñèãíàëà ðàçñåéâàíå íà ìîäóëèðàíàòà ñâåòëèíà ïðè ë=820
nm. Âñÿêà êðèâà å ïîäëîæåíà íà JIP òåñò àíàëèç çà èç÷èñëÿâàíå íà ïàðàìåòðè, õàðàêòåðèçèðàùè: êâàíòîâèòå
åôåêòèâíîñòè íà åëåêòðîííèÿ ïîòîê âúâ ôîòîñèñòåìà II, âúâ ôîòîñèñòåìà I è â åëåêòðîí-òðàíñïîðòíàòà âåðèãà
ìåæäó äâåòå ôîòîñèñòåìè; êîíöåíòðàöèÿòà íà àêòèâíèòå ðåàêöèîííè öåíòðîâå íà ÔÑ II; åëåêòðîííèÿò êàïàöèòåò íà
åëåêòðîí-òðàíñïîðòíàòà âåðèãà, êàêòî è òîòàëåí ïàðàìåòúð, õàðàêòåðèçèðàù ïðîèçâîäèòåëíîñòòà íà ïúðâè÷íèòå
ðåàêöèè âúâ ÔÑÀ. Ïîêàçàíî å, ÷å íèñêîòåìïåðàòóðíèÿò ñòðåñ âðåìåííî ïîíèæàâà åôåêòèâíîñòòà íà ôîòîñèíòåòè÷íèÿ
åëåêòðîíåí ïðåíîñ, äîêàòî ïðè âèñîêèòå òåìïåðàòóðè (íàä 42.5°Ñ) ñå ðàçâèâàò ïðîöåñè íà èíàêòèâàöèÿ íà
ôîòîñèíòåòè÷íèòå ðåàêöèè. ×óâñòâèòåëíîñòòà íà ðàçëè÷íèòå ó÷àñòúöè íà åëåêòðîí-òðàíñïîðòíàòà âåðèãà êúì
âèñîêîòåìïåðàòóðíèÿ ñòðåñ íàìàëÿâà â ðåäà: ÐÖ íà ÔÑ II > (QA – PQ ïóë) > (PQ.H2 – PC – ÔÑ I – àêöåïòîðè íà ÔÑ I).
Êàòî öÿëî èçñëåäâàíåòî ïîêàçâà, ÷å JIP òåñòúò å èíôîðìàòèâeí ìåòîä çà îöåíêà íà äèíàìèêàòà íà ñòðåñîâàòà
ðåàêöèÿ è íà ñúñòîÿíèåòî íà ðàñòåíèåòî ñëåä ñòðåñ.
Abstract
The reaction of the photosynthetic apparatus in higher plants to high- and low-temperature stress could be analyzed
using a JIP-test. Segments of primary leaves of decapitated bean plants were placed on a metal surface at temperatures 0°,
5° and 10°C (low-temperature jump) or 30°, 35°, 37.5°, 40°, 42.5°, 45°, 47.5° and 50°C (high-temperature jump). Onesecond
OJIP-transients of chlorophyll fluorescence and the simultaneous signal of modulated light scattering at ë = 820 nm
with 30 s dark interval were recorded for 20 min. Each induction curve was subjected to the JIP-test analysis to calculate the
parameters characterizing: the quantum efficiencies of the electronic flow in PS II, PS I and the electron transport chain
between the two Photosystems; the concentration of the active reaction centers of PS II; the electron capacity of the
electron transport chain and a total parameter characterizing the effects of the primary productivity in the photosynthetic
apparatus. It was shown that the low-temperature stress temporary lowered the photosynthetic efficiency of the electron
transport, while the high-temperature stress at temperatures above 42.5°C induced inactivation processes of the
photosynthetic reactions. The sensitivity of the different sites of the electron transport chain to the heat stress decreased in
the following order: (RC of PS II) > (QA-PQ-pool) > (PQ.H2-PC-PS I-acceptors of PS I). A conclusion was made that the JIPtest
is an informative means of evaluating the dynamics of the stress response and the plant state after stress.
Êëþ÷îâè äóìè: ôîòîñèíòåçà, õëîðîôèëíà ôëóîðåñöåíöèÿ, JIP òåñò, âèñîêè è íèñêè òåìïåðàòóðè, ñòðåñ ïðè ðàñòåíèÿ.
Key words: photosynthesis, chlorophyll fluorescence, JIP-test, high and low temperatures, plant stress.
8
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
ÓÂÎÄ
Ðàñòåíèÿòà, êàòî îòâîðåíà òåðìîäèíàìè÷íà
ñèñòåìà, ñúùåñòâóâàò â óñëîâèÿòà íà ïîñòîÿííî
ïðîìåíÿùà ñå îêîëíà ñðåäà. Ìíîãî ÷åñòî êðàéíàòà
ïðîäóêòèâíîñò íà îòäåëíî ðàñòåíèå è ïîñåâè îò
ðàñòèòåëíè ñåëñêîñòîïàíñêè êóëòóðè ñå îïðåäåëÿ îò
íàëè÷íèòå ôàêòîðè íà ñðåäàòà â ïåðèîäà íà âåãåòàöèÿ.
 çàâèñèìîñò îò ñèëàòà íà âúíøíîòî âúçäåéñòâèå ñå
îïðåäåëÿ è êðàéíèÿò åôåêò âúðõó ðàñòèòåëíèÿ
îðãàíèçúì. Ñèëíè âúçäåéñòâèÿ íà ðàçëè÷íè áèîòè÷íè
è àáèîòè÷íè ôàêòîðè íà ñðåäàòà ñà ñïîñîáíè äà
ïðåäèçâèêàò çíà÷èòåëíè ñòðóêòóðíè è ôóíêöèîíàëíè
óâðåæäàíèÿ â ðàñòåíèåòî. Ñúùåâðåìåííî íèñêîèíòåíçèâíè
ôàêòîðè ìîäèôèöèðàò ïðîìåíëèâèòå
ôóíêöèîíàëíè õàðàêòåðèñòèêè íà ðàñòèòåëíàòà êëåòêà,
îñèãóðÿâàéêè ìàêñèìàëíà åôåêòèâíîñò íà ïðîòè÷àùèòå
â îðãàíèçìà ïðîöåñè (Strasser et al., 2000). Ôîòîñèíòåçàòà
å íàé-âàæíèÿò åíåðãåòè÷åí ïðîöåñ â ðàñòåíèÿòà.
Ñâåòëèííèòå ôîòîñèíòåòè÷íè ðåàêöèè ñà èçâúíðåäíî
÷óâñòâèòåëíè êúì ïðîìÿíàòà íà âúíøíèòå óñëîâèÿ,
ïîðàäè êîåòî òå ìîæå äà ñå èçïîëçâàò êàòî ìîäåë çà
èçó÷àâàíå íà ñòðåñîâàòà ðåàêöèÿ íà ðàñòåíèÿòà.
Ñòðàññåð è ñúòðóäíèöè (Tsimilli-Michael and Strasser,
2008; Strasser et al., 2010; Ãîëöåâ è ñúòð., 2010) ñà
ðàçðàáîòèëè ïîäõîä çà îõàðàêòåðèçèðàíå íà
ôóíêöèîíàëíîòî ñúñòîÿíèå íà íàòèâíè ðàñòèòåëíè
ñèñòåìè (öåëè ðàñòåíèÿ in vivo è in situ), áàçèðàù ñå íà
èçó÷àâàíå íà ôîòîèíäóöèðàíè ïðîìåíè íà
õëîðîôèëíàòà ôëóîðåñöåíöèÿ â ðàñòèòåëíèòå òúêàíè,
íàðå÷åí JIP òåñò. Èçõîæäàéêè îò ñòîéíîñòèòå íà
ôëóîðåñöåíöèÿòà â îñíîâíèòå õàðàêòåðèñòè÷íè òî÷êè
íà èíäóêöèîííàòà êðèâà, ìîæå äà ñå èç÷èñëÿò âàæíè
ñòðóêòóðíè è ôóíêöèîíàëíè ïàðàìåòðè íà ôîòîñèíòåòè
÷íèÿ àïàðàò (ÔÑÀ) (Ãîëöåâ è ñúòð., 2010):
• ϕPo – êâàíòîâ äîáèâ íà ïúðâè÷íàòà ôîòîõèìè÷íà
ðåàêöèÿ âúâ ôîòîñèñòåìà II (ÔÑ II);
• ϕEo – êâàíòîâà åôåêòèâíîñò íà ïðåíîñà íà
åëåêòðîí îò ðåäóöèðàíèÿ QA (ïúðâè÷íèÿ õèíîíîâ
àêöåïòîð íà ÔÑ II) êúì âåðèãàòà îò åëåêòðîííè
ïðåíîñèòåëè ìåæäó äâåòå ôîòîñèñòåìè;
• ϕRo – êâàíòîâà åôåêòèâíîñò íà ïðåíîñà íà
åëåêòðîí îò ðåäóöèðàíèÿ ïëàñòîõèíîí (PQ) ïðåç
ÔÑ I êúì íåéíèòå àêöåïòîðè;
• RC/CSo – êîíöåíòðàöèÿ íà àêòèâíèòå ðåàêöèîííè
öåíòðîâå íà ÔÑ II, ïðåñìåòíàòà íà åäèíèöà ïëîù;
• EC/RC – áðîé åëåêòðîííè ïðåíîñèòåëè,
îáñëóæâàùè åäèí àêòèâåí ðåàêöèîíåí öåíòúð;
• PIABS – èíäåêñ íà ïðîèçâîäèòåëíîñò íà ÔÑÀ.
Òåìïåðàòóðàòà å åäèí îò íàé-âàæíèòå ôàêòîðè
íà îêîëíàòà ñðåäà, îïðåäåëÿùè ôóíêöèîíèðàíåòî íà
ðàñòåíèÿòà. Âëèÿíèåòî íà òåìïåðàòóðèòå (ïðåäèìíî
ïîâèøåíè) âúðõó ôóíêöèîíèðàíåòî íà ÔÑÀ ñå èçðàçÿâà
÷ðåç ïðîìåíè â ñïîñîáíîñòòà çà êèñëîðîäíî îòäåëÿíå
(âæ. íàïð. Nash et al., 1985; Enami et al., 1994) â
ïúðâè÷íèÿ åëåêòðîíåí òðàíñïîðò â òèëàêîèäíèòå
ìåìáðàíè (Frolec et al., 2008; Kouøil et al., 2004) èëè â
àñèìèëàöèÿòà íà âúãëåðîäåí äèîêñèä (Crafts-Brandner
and Salvucci, 2002; Lazár et al., 2005).
 íàñòîÿùàòà ðàáîòà ïðîñëåäèõìå
êîìïëåêñíàòà ðåàêöèÿ íà ôîòîñèíòåòè÷íèÿ àïàðàò â
ëèñòà îò ôàñóëåâè ðàñòåíèÿ êúì âèñîêî- è
íèñêîòåìïåðàòóðåí ñòðåñ ïî èçìåíåíèÿòà â
ãîðåïîñî÷åíèòå ïàðàìåòðè íà JIP òåñòà.
ÌÀÒÅÐÈÀËÈ È ÌÅÒÎÄÈ
Îòãëåæäàíå íà ðàñòåíèÿòà
 åêñïåðèìåíòèòå ñà èçïîëçâàíè îòêúñíàòè
ëèñòà îò 20-25-äíåâíè ðàñòåíèÿ îò ôàñóë (Phaseolus
vulgaris L.), ñîðò „×åðåí ñòàðîçàãîðñêè”, îòãëåæäàíè êàòî
âîäíà êóëòóðà â õðàíèòåëåí ðàçòâîð íà Êíîï âúâ
ôèòîñòàòåí áîêñ ïðè òåìïåðàòóðà 22-25°C, âëàæíîñò
30-40%, äåíîíîùåí ðåæèì ñâåòëî/òúìíî 12:12h è
ëóìèíåñöåíòíî îñâåòëåíèå ñ èíòåíçèòåò 250 μmol.s-1.m-2.
 åêñïåðèìåíòèòå ñà èçïîëçâàíè ïúðâè÷íè ëèñòà îò
äåêàïèòèðàíè ïî ìåòîäà íà Yordanov et al. (2008)
ðàñòåíèÿ.
Ðàáîòà ñ mPEA
Åäíîâðåìåííàòà ðåãèñòðàöèÿ íà ôîòîèíäóöèðàíèòå
ñèãíàëè íà áúðçàòà è çàáàâåíàòà õëîðîôèëíà
ôëóîðåñöåíöèÿ è ïðîìåíèòå â ïîãëúùàíåòî ïðè 820 nm
å ïðîâåæäàíà ñ àïàðàòà M-PEA (Multifunctional Plant
Efficiency Analyzer), ðàçðàáîòåí è ïðîèçâåäåí îò
Hansatech Instruments Ltd. (King’s Lynn, Norfolk, UK) (ôèã.
1). Ïîäðîáíî îïèñàíèå íà ðàáîòàòà ñ àïàðàòà è íà÷èíà íà
ïîëó÷àâàíå íà èíôîðìàöèÿòà îò åêñïåðèìåíòàëíèòå äàííè
âæ. â Ãîëöåâ è ñúòð. (2010) è Strasser et al. (2010).
Ôèã. 1. Åêñïåðèìåíòàëíà ñèñòåìà çà èçñëåäâàíå íà
åôåêòà íà “òåìïåðàòóðíèÿ ñêîê” âúðõó ëèñò
Fig. 1. Experimental setup for investigation of “temperature
jump” effects on leaves
mPEA
управляващ блок
работна глава
контактна пластина
термостатиращ блок
oбект и “clip” на mPEA






Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
15
ÂÚÇÌÎÆÍÎÑÒÈ ÍÀ ÍÎÂÈß ÌÓËÒÈÔÓÍÊÖÈÎÍÀËÅÍ ÀÍÀËÈÇÀÒÎÐ ÍÀ ÅÔÅÊÒÈÂÍÎÑÒÒÀ ÍÀ ÐÀÑÒÅÍÈßÒÀ
ÇÀ ÈÇÑËÅÄÂÀÍÅ ÍÀ ÔÓÍÊÖÈÎÍÀËÍÎÒÎ ÑÚÑÒÎßÍÈÅ ÍÀ ÔÎÒÎÑÈÍÒÅÒÈ×ÍÈß ÀÏÀÐÀÒ
MULTIFUNCTIONAL PLANT EFFICIENCY ANALYZER MPEA USED TO DESCRIBE THE PHYSIOLOGICAL STATES
OF THE PHOTOSYNTHETIC APPARATUS
Âàñèëèé Ãîëöåâ1*, Èâàí Éîðäàíîâ2, Ìàðèÿ Ãóðìàíîâà1, Ìàðãàðèòà Êóçìàíîâà1,
Ùåðÿí Äàìáîâ1, Ñîíÿ Àïîñòîëîâà1, Ãåðãàíà Ñàâîâà1, Ðåòî Éîðã Ñòðàñåð3
Vasilij Goltsev1*, Ivan Yordanov2, Maria Gurmanova1, Margarita Kouzmanova1,
Shteryan Dambov 1, Sonia Apîstîlova1, Gergana Savova1, Reto Jorg Strasser3
1ÑÓ “Ñâ. Êëèìåíò Îõðèäñêè”, Áèîëîãè÷åñêè ôàêóëòåò, Ñîôèÿ
2Èíñòèòóò ïî ôèçèîëîãèÿ íà ðàñòåíèÿòà „Ìåòîäè Ïîïîâ”, ÁÀÍ, Ñîôèÿ
3Ëàáîðàòîðèÿ ïî áèîåíåðãåòèêà, Æåíåâñêè óíèâåðñèòåò, Æåíåâà, Øâåéöàðèÿ
1St. Kliment Ohridski University of Sofia, Faculty of Biology, Sofia, Bulgaria
2Methody Popov Institute of Plant Physiology, BAS, Sofia, Bulgaria
3Bioenergetics Laboratory, University of Geneva, Jussy-Geneva, Switzerland
*E-mail: goltsev@biofac.uni-sofia.bg
Ðåçþìå
Áúðçîòî ðàçâèòèå íà ìîëåêóëíî-áèîëîãè÷íèòå è ìîëåêóëíî-ãåíåòè÷íèòå òåõíèêè äàäå â ðúöåòå íà
ñåëåêöèîíåðèòå èíñòðóìåíò çà íàñî÷åíà ìîäèôèêàöèÿ íà ðàñòèòåëíèÿ ãåíîì è çà ïîëó÷àâàíå íà ãîëÿì áðîé îáåêòè
ñ ðàçëè÷íè õàðàêòåðèñòèêè.  òåçè óñëîâèÿ âúçíèêâà îñíîâåí ïðîáëåì çà óñïåøíà ñåëåêöèîííà ðàáîòà – áúðç è
åôåêòèâåí ïîäáîð íà ïåðñïåêòèâíè îáðàçöè ñ íóæíè ïîëåçíè ñâîéñòâà. Ôèðìàòà Hansatech Instruments Lts. (Kings
Lynn, UK) ðàçðàáîòè íîâ èíñòðóìåíò, ïîçâîëÿâàù áúðç è ìíîãî èíôîðìàòèâåí àíàëèç (in vivo è in situ) íà
ôóíêöèîíàëíîòî ñúñòîÿíèå íà ôîòîñèíòåòè÷íèÿ àïàðàò ïðè ðàñòåíèÿòà – mPEA (multifunctional Plant Efficiency
Analyzer). Òîé ñå áàçèðà íà åäíîâðåìåííà ðåãèñòðàöèÿ íà êèíåòè÷íèòå õàðàêòåðèñòèêè íà áúðçàòà (âàðèàáèëíàòà)
õëîðîôèëíà ôëóîðåñöåíöèÿ, çàáàâåíàòà õëîðîôèëíà ôëóîðåñöåíöèÿ è ìîäóëèðàíîòî ðàçñåéâàíå ïðè 820 nm â
öåëè íåîòêúñíàòè ëèñòà. Íà ïðèìåðà íà àíàëèçà íà ëèñòà îò ôàñóëåâè ðàñòåíèÿ â ðàçëè÷íî ôèçèîëîãè÷íî ñúñòîÿíèå
(êîíòðîëíè è äåêàïèòèðàíè ïðè ïîÿâàòà íà ïúðâè ñëîæåí ëèñò) ñà ïðåäñòàâåíè èíôîðìàöèîííèòå âúçìîæíîñòè íà
àïàðàòà. Îïèñàíè ñà åêñïåðèìåíòàëíè ïîäõîäè çà èçó÷àâàíå íà ñúñòîÿíèåòî íà ôîòîñèíòåòè÷íèÿ àïàðàò è íà÷èíè
çà èç÷èñëÿâàíå íà âàæíè ñòðóêòóðíè è ôóíêöèîíàëíè ïàðàìåòðè, õàðàêòåðèçèðàùè êâàíòîâàòà åôåêòèâíîñò è
ñêîðîñòèòå íà åëåêòðîí-òðàíñïîðòíèòå ðåàêöèè âúâ Ôîòîñèñòåìà I è Ôîòîñèñòåìà II.
Abstract
The rapid developments of molecular biological and molecular genetic techniques provide plant-growers with an
instrument for target-oriented modifications of the plant genome and obtaining a large number of samples with different
characteristics. Under these conditions a major problem for successful breeding work arises – a quick and efficient selection
of promising samples with the needed useful properties. Hansatech Instruments Ltd (Kings Lynn, UK) developed a new tool
- mPEA (multifunctional Plant Efficiency Analyzer) allowing for fast and very informative sub-millisecond time resolution
analysis (in vivo and in situ) of the functional status of the photosynthetic apparatus in plants. It is based on a simultaneous
signal 16-bit resolution registration of the kinetic characteristics of prompt chlorophyll fluorescence emission, delayed
chlorophyll fluorescence and modulated light scattering and reflection of the actinic incident light at 820 nm. Leaves from
bean plants at different physiological states (control and decapitated after the appearance of the first trifoliate leaf) have
been analyzed. The prompt fluorescence signal provides information about electron transport fluxes through Photosystem
II and Photosystem I. The modulated reflection signal at 820 nm provides information about the activity of the donor and
acceptor side of Photosystem I. The delayed fluorescence signals provide information about the oxygen evolving complex
and the acceptor side of Photosystem II presenting structural information as rate constants, related to the whole photosynthetic
apparatus.
16
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Êëþ÷îâè äóìè: ôîòîñèíòåçà, õëîðîôèëíà ôëóîðåñöåíöèÿ, çàáàâåíà ôëóîðåñöåíöèÿ, JIP òåñò, ñòðåñ ïðè ðàñòåíèÿ.
Key words: photosynthesis, chlorophyll fluorescence, delayed fluorescence, JIP-test, plant stress.
ÓÂÎÄ
Âñè÷êè ïðåäñòàâèòåëè íà ôëîðàòà,
ïðèòåæàâàùè ñïîñîáíîñò äà ôîòîñèíòåçèðàò, ïðè
îñâåòÿâàíå èçëú÷âàò ñâåòëèíà (íàðå÷åíà â çàâèñèìîñò
îò íà÷èíà íà èçëú÷âàíå áúðçà ôëóîðåñöåíöèÿ, ÁÔ èëè
çàáàâåíà ôëóîðåñöåíöèÿ, ÇÔ), êîÿòî íîñè áîãàòà
èíôîðìàöèÿ çà ñòðóêòóðàòà è ôóíêöèèòå íà
ôîòîñèíòåòè÷íèÿ àïàðàò (Strasser at al., 2004; Goltsev
et al., 2009). Ñëåä îòêðèâàíåòî íà èíäóêöèîííèòå
ïðåõîäè (Kautski and Hirsch, 1931) è âðúçêàòà èì ñ
ïðîìåíèòå â ðåäîêñ ñúñòîÿíèåòî íà ïúðâèÿ õèíîíîâ
àêöåïòîð (QA) íà Ôîòîñèñòåìà II (ÔÑ II) (Butler, 1972)
ÁÔ ïîñòîÿííî ïðèâëè÷à èíòåðåñà íà èçñëåäîâàòåëèòå
êàòî ìåòîä çà èçñëåäâàíå íà ôîòîñèíòåçàòà ïðè íàòèâíè
ðàñòåíèÿ. Áÿõà ðàçðàáîòåíè äâà îñíîâíè ïîäõîäà çà
ðåãèñòðàöèÿ íà âàðèàáèëíàòà ôëóîðåñöåíèÿ – ÷ðåç
àìïëèòóäíà ìîäóëàöèÿ íà èçìåðâàùèÿ ëú÷ (Schreiber
et al., 1986) è ÷ðåç äèðåêòíà ðåãèñòðàöèÿ íà ñèãíàëà íà
ôëóîðåñöåíöèÿòà, âúçáóäåíà îò àêòèíè÷íà ñâåòëèíà
(Strasser and Govindjee, 1991). Íà áàçàòà íà òåçè
ïîäõîäè ñà ñúçäàäåíè äâà îñíîâíè òèïà ôëóîðèìåòðè:
ôëóîðèìåòúð ñ àìïëèòóäíà ìîäóëàöèÿ PAM
(ïðîèçâåæäàí îò ôèðìàòà Walz, Germany) è îïòèêîåëåêòðîíåí
ôëóîðèìåòúð ñ äèðåêòíî îñâåòÿâàíå è
ðåãèñòðàöèÿ (PEA, Plant Efficiency Analyzer, ïðîèçâåæäàí
îò Hansatåch Instruments, Kings Lynn, UK). Ïðåç
ïîñëåäíèòå äâå äåñåòèëåòèÿ äâàòà ìåòîäà àêòèâíî ñå
ðàçðàáîòâàò è ñà ïðîèçâåäåíè ìíîãî ìîäèôèêàöèè íà
àïàðàòè çà àíàëèç íà ðàñòåíèÿòà íà áàçàòà íà
âàðèàáèëíà õëîðîôèëíà ôëóîðåñöåíöèÿ.
Âòîðèÿò âèä èçëú÷âàíà îò ðàñòåíèÿòà
ëóìèíåñöåíöèÿ, çàáàâåíàòà ôëóîðåñöåíöèÿ, å îòêðèòà
îò Ñòðåëåð è Àðíîëä ïðåç 1951 (Strehler and Arnold,
1951). Ñâåòëèííèòå êâàíòè íà ÇÔ ñå èçëú÷âàò îò
õëîðîôèëíè ìîëåêóëè íà ÔÑ II, âòîðè÷íî âúçáóäåíè â
ðåçóëòàò íà èçëú÷âàòåëíàòà ðåêîìáèíàöèÿ íà çàðÿäèòå
â ðåàêöèîííèÿ öåíòúð (Lavorel, 1975; Malkin, 1978;
Radenovich et al., 1994; Goltsev et al., 2009). Òå íîñÿò
èíôîðìàöèÿ êàêòî çà äèðåêòíèòå, òàêà è çà îáðàòíèòå
ðåàêöèè íà åëåêòðîííèÿ ïðåíîñ â äîíîðíàòà è
àêöåïòîðíàòà ñòðàíà íà ÔÑ II. Ïîðàäè íèñêàòà
âåðîÿòíîñò íà îáðàòíèòå ðåàêöèè èíòåíçèòåòúò íà ÇÔ
å èçêëþ÷èòåëíî íèñúê (ñ íÿêîëêî ïîðÿäúêà ïî-íèñúê îò
òîçè íà ÁÔ). Ïî âðåìå íà îñâåòÿâàíåòî íà ðàñòåíèÿòà
èçëú÷âàíèòå êâàíòè íà ÇÔ íå ìîãàò äà áúäàò ðàçëè÷åíè
îò òåçè íà ÁÔ, êîåòî çàòðóäíÿâà ðåãèñòðàöèÿòà íà ÇÔ.
Òîâà å åäíà îò îñíîâíèòå ïðè÷èíè äîñåãà äà íå ñå
ïðîèçâåæäà àïàðàòóðà çà èçìåðâàíå è àíàëèç íà
çàáàâåíàòà ëóìèíåñöåíöèÿ, à èçñëåäâàíèÿòà é äà ñå
îñúùåñòâÿâàò ñ àïàðàòóðà, ðàçðàáîòåíà è èçãðàäåíà â
ñàìèòå ëàáîðàòîðèè. Âñåêè åäèí òàêúâ àïàðàò áå
óíèêàëåí ïî îòíîøåíèå íà ôóíêöèîíàëíèòå ïàðàìåòðè,
ïîðàäè êîåòî ñðàâíÿâàíåòî íà ðåçóëòàòèòå, ïîëó÷åíè â
ðàçëè÷íè ëàáîðàòîðèè, áå çàòðóäíåíî. Ïúðâè ïðîòîòèï
íà ñòàíäàðòåí àïàðàò íà áàçàòà íà ìåõàíè÷åí
ôîñôîðîñêîï çà åäíîâðåìåííà ðåãèñòðàöèÿ íà ÁÔ è
ÇÔ áå ðàçðàáîòåí è ïðîèçâåäåí îò ôèðìàòà ÒÅÑÒ,
Êðàñíîÿðñê, Ðóñèÿ (Ãàåâñêè, Ìîðãóí, 1993; Zaharieva and
Goltsev, 2003), íî äî ñåðèéíî ïðîèçâîäñòâî íå ñå ñòèãíà.
Ôèðìàòà Hansatech Instrument íà áàçàòà íà
òÿõíàòà ñåðèÿ ôëóîðèìåòðè òèï PEA ñúçäàäå îïòèêîåëåêòðîíåí
êîìáèíèðàí óðåä ñ âèñîêà âðåìåâà
ðàçäåëèòåëíà ñïîñîáíîñò (ñèãíàëèòå ñå îò÷èòàò íà
âñåêè 10 μs) çà åäíîâðåìåííà ðåãèñòðàöèÿ íà ñèãíàëèòå
íà ÁÔ, ÇÔ è ðàçñåéâàíå ïðè 820 nm – mPEA. Öåëòà íà
íàñòîÿùàòà ðàáîòà å äà ñå ïðåäñòàâÿò âúçìîæíîñòèòå
mPEA
работна
глава
обектодържател
(clip)
Ôèã. 1. Ïðîâåæäàíå íà åêñïåðèìåíò ñ ôëóîðèìåòúðà
mPEA âúðõó íåîòêúñíàò ïúðâè÷åí ëèñò íà
äåêàïèòèðàíîòî ôàñóëåâî ðàñòåíèå. Ðàáîòíàòà ãëàâà,
çàêðåïåíà íà ãúâêàâ ñòàòèâ, ñå ðàçïîëàãà íàä ãîðíàòà
ïîâúðõíîñò íà èçáðàíèÿ ëèñò. Îáåêòîäúðæàòåëÿò ñå
ïîñòàâÿ âúðõó ëèñòà çà âðåìåòî íà òúìíèííàòà
àäàïòàöèÿ (1 h), ñëåä êîåòî ñå ñâúðçâà ñ ðàáîòíàòà
ãëàâà è ñå ïðîâåæäà èçìåðâàíåòî íà
ôîòîñèíòåòè÷íèòå ïàðàìåòðè. Íà çàäíèÿ ôîí çàä
äåêàïèòèðàíîòî ðàñòåíèå ñå âèæäàò ëèñòà îò
êîíòðîëíî (íåäåêàïèòèðàíî) ôàñóëåâî ðàñòåíèå
Fig. 1. Experimental setup for fluorescence measurement
with mPEA fluorometer. Working head held on a flexible tripod,
is placed over the upper surface of the selected attached
primary leaf of decapitated bean plant. JIP transients are
recorded after 1 h of dark adaptation in the clip. Behind the
decapitated bean plant is control (non-decapitated) plant
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
17
íà íîâèÿ ôëóîðèìåòúð îò ñåðèÿòà PEA-ôëóîðèìåòðè
çà àíàëèç íà ôèçèîëîãè÷íîòî ñúñòîÿíèå íà ðàñòåíèÿòà,
çà èçñëåäâàíå íà ñòðåñîâèÿ îòãîâîð, â ñåëåêöèîííàòà
ðàáîòà çà ñêðèíèíã íà âàðèàíòè ïðè ïîäáîðà íà
ïåðñïåêòèâíè ñåëñêîñòîïàíñêè êóëòóðè ñ òîëåðàíòåí
ãåíîòèï.
ÌÀÒÅÐÈÀËÈ È ÌÅÒÎÄÈ
Îòãëåæäàíå íà ðàñòåíèÿòà
 åêñïåðèìåíòèòå ñà èçïîëçâàíè öåëè 20-25-
äíåâíè ðàñòåíèÿ èëè îòêúñíàòè ëèñòà îò ôàñóë
(Phaseolus vulgaris L.), ñîðò „×åðåí ñòàðîçàãîðñêè”,
îòãëåæäàíè êàòî âîäíà êóëòóðà â õðàíèòåëåí ðàçòâîð
íà Êíîï âúâ ôèòîñòàòåí áîêñ ïðè òåìïåðàòóðà 22-25°C,
âëàæíîñò 30-40%, äåíîíîùåí ðåæèì ñâåòëî/òúìíî
12:12h è ëóìèíåñöåíòíî îñâåòëåíèå ñ èíòåíçèòåò
250 μmol.s-1.m-2.
Áÿõà èçïîëçâàíè ëèñòà îò êîíòðîëíè ðàñòåíèÿ
è äåêàïèòèðàíè (ñ ïðåìàõâàíå íà àïèêàëíàòà ïúïêà)
ñëåä ïîÿâàòà íà ïúðâè ñëîæåí ëèñò (Yordanov et al.,
2008).
Ðàáîòà ñ mPEA
Åäíîâðåìåííàòà ðåãèñòðàöèÿ íà ôîòîèíäóöèðàíèòå
ñèãíàëè íà áúðçàòà è çàáàâåíàòà õëîðîôèëíà
ôëóîðåñöåíöèÿ è ïðîìåíèòå â ïîãëúùàíåòî ïðè 820 nm
å ïðîâåæäàíà ñ àïàðàòà M-PEA (Multifunctional Plant
Efficiency Analyzer), ðàçðàáîòåí è ïðîèçâåäåí îò
Hansatech Instruments Ltd. (King’s Lynn, Norfolk, UK) (âæ.
ôèã. 1). Ôëóîðèìåòúðúò å ïðèãîäåí çà ðàáîòà ñ íàòèâíè
îáåêòè – ëèñòà îò âèñøè ðàñòåíèÿ, è íå èçèñêâà
îòêúñâàíåòî íà ëèñò îò ðàñòåíèåòî. Îáåêòîäúðæàòåëÿò,
ïðåäíàçíà÷åí çà çàòúìíÿâàíå íà îáåêòà, ïðåäñòàâëÿâà
ëåêà ïëàñòìàñîâà ùèïêà. Ëèñòúò ñå ïðèòèñêà ñ ìåêà
åëàñòè÷íà ÷åðíà ãóìèðàíà ïëàñòèíà êúì îòâîðà, ïðåç
êîéòî ñå îñâåòÿâà, è ñå ðåãèñòðèðàò èçëú÷åíèòå îò
îáåêòà ñâåòëèííè êâàíòè. Êëèïúò ôðèêöèîííî ñå
çàêðåïâà ïðåä ïðîçîðåöà íà ðàáîòíàòà ãëàâà,
îñèãóðÿâàéêè ñâåòëîèçîëàöèÿ íà îáåêòà è íà
ñâåòëî÷óâñòâèòåëíèòå ôîòîäèîäè îò âúíøíà ðàçñåÿíà
ñâåòëèíà. Çà ïî-äîáðà ñâåòëîõåðìåòè÷íîñò îáåêòîäúðæàòåëÿò
å èçðàáîòåí îò ÷åðíà ïëàñòìàñà. Çà
âúçáóæäàíå íà ÁÔ è ÇÔ îáåêòúò ñå îñâåòÿâà ñ ÷åðâåíà
(λ ≈ 650 nm) ôîòîñèíòåòè÷íî àêòèâíà ñâåòëèíà,
èçëú÷âàíà îò ñâðúõÿðúê ñâåòîäèîä è ôîêóñèðàíà ñ ëåùà
âúðõó ðàáîòíèÿ îòâîð íà îáåêòîäúðæàòåëÿ.
Ìàêñèìàëíèÿò èíòåíçèòåò íà íèâîòî íà ïîâúðõíîñòòà
íà îáåêòà å 5000 μmol.m 2.s-1. Ïî-ïîäðîáíî ïðèíöèïúò
íà ðàáîòà íà àïàðàòà å îïèñàí â ïðåäèøíà ñòàòèÿ
(Strasser et al., 2010).
Åäíîâðåìåííàòà ðåãèñòðàöèÿ íà ÁÔ è ÇÔ
èçèñêâà ðåäóâàíåòî íà ïåðèîäè íà îñâåòÿâàíå è
çàòúìíÿâàíå íà îáåêòà, ïðåç êîèòî ñå ðåãèñòðèðàò äâàòà
òèïà ñèãíàëè – ñúîòâåòíî áúðçà è çàáàâåíà
ôëóîðåñöåíöèÿ. Çà ïîëó÷àâàíå íà èíäóêöèîííè êðèâè
(ÈÊ) íà ÁÔ, ìàêñèìàëíî ïðèáëèæåíè êúì êðèâàòà, êîÿòî
ñå ðåãèñòðèðà ñ ïîñòîÿííî âúçáóæäàíå, å íåîáõîäèìî
íàìàëÿâàíå íà îòíîñèòåëíèÿ äÿë íà òúìíèííèòå
ïåðèîäè ïðè êâàçèñòàöèîíàðíîòî îñâåòÿâàíå. Âúâ
ôëóîðèìåòúðà M-PEA ñå ðåàëèçèðà ñõåìà, ïðè êîÿòî
äåëúò íà òúìíèííèòå èíòåðâàëè íå íàäâèøàâà 1/3 îò
ñâåòëèííèòå (ò.å. 25% îò ðåãèñòðàöèîííîòî âðåìå).
Åäíîâðåìåííî ñ ðåãèñòðàöèÿòà íà áúðçàòà è
çàáàâåíàòà õëîðîôèëíà ôëóîðåñöåíöèÿ ôëóîðèìåòúðúò
mPEA ìîæå äà çàïèñâà ïðîìåíèòå â ïîãëúùàíåòî
ïðè 820 nm. Òå ñå ðåãèñòðèðàò â ðåæèì íà àíàëèç íà
ðàçñåÿíàòà ñâåòëèíà (reflection mode). Ïðè ôîòîèíäóöèðàíî
ïîâèøàâàíå íà ïîãëúùàíåòî äåëúò íà
ðàçñåÿíàòà ñâåòëèíà íàìàëÿâà, ïî êîåòî ìîæå äà ñå
ñúäè çà ïðîìåíèòå â êîíöåíòðàöèÿòà íà îêèñëåíèòå
ñúñòîÿíèÿ íà ïðåíîñèòåëèòå âúâ ÔÑ I – õëîðîôèëà íà
ðåàêöèîííèÿ öåíòúð (P700
+) è ïëàñòîöèàíèíà (PC+)
(Shansker et al., 2003).
Ïîñëåäîâàòåëíîñòòà íà ïåðèîäèòå íà
îñâåòÿâàíå/òúìíèíà, âèäúò íà ñâåòëèííèÿ èçòî÷íèê è
èíòåíçèòåòúò íà ñâåòëèíàòà ïðè îñâåòÿâàíåòî ñå
çàäàâàò ÷ðåç ïðåäâàðèòåëíî çàðåäåí â àïàðàòà
ïðîòîêîë, êîéòî ñå ïðèãîòâÿ îò îïåðàòîðà ñ ïîìîùòà íà
ïðèëîæåíèÿ ñîôòóåð. Ñëåä èçìåðâàíåòî ÷èñëåíèòå
äàííè ñå çàðåæäàò â êîìïþòúð. Çà âòîðè÷åí àíàëèç íà
äàííèòå áå èçïîëçâàí ñïåöèàëèçèðàí ñîôòóåð “DF
analyzer 4.4.2”, ðàçðàáîòåí â Êàòåäðàòà ïî áèîôèçèêà
è ðàäèîáèîëîãèÿ íà Áèîëîãè÷åñêèÿ ôàêóëòåò â ÑÓ „Ñâ.
Êë. Îõðèäñêè”.
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
Âàæíî ïðåäèìñòâî íà íîâèÿ àïàðàò çà
ëóìèíåñöåíòíè èçìåðâàíèÿ å âúçìîæíîñòòà âúðõó åäèí
îáåêò äà áúäàò íàáëþäàâàíè åäíîâðåìåííî íÿêîëêî
ëóìèíåñöåíòíè è îïòè÷íè õàðàêòåðèñòèêè: èíòåíçèòåò
íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ, èíòåíçèòåò íà
çàáàâåíàòà ôëóîðåñöåíöèÿ, ðåãèñòðèðàíà â ðàçëè÷íè
âðåìåâè äèàïàçîíè íà òúìíèííà ðåëàêñàöèÿ, è
ôîòîèíäóöèðàíè ïðîìåíè â ðàçñåéâàíåòî íà
ìîäóëèðàíàòà ñâåòëèíà ñ λ = 820 nm (âæ. ôèã. 2). Òðèòå
âèäà ñèãíàëè ïîêàçâàò õàðàêòåðíè ïðîìåíè ïðè
îñâåòÿâàíå íà îáåêòà ñ ôîòîñèíòåòè÷íî àêòèâíà
ñâåòëèíà, êîèòî îòðàçÿâàò ïðîòè÷àùèòå â ðàñòèòåëíàòà
êëåòêà ôîòîèíäóöèðàíè ðåàêöèè è ïðîöåñè.
Ñðàâíÿâàíåòî íà äèíàìèêàòà íà òðèòå ñèãíàëà
ïîçâîëÿâà ïî-äîñòîâåðíà èíòåðïðåòàöèÿ íà äàííèòå.
Õëîðîôèëíà ôëóîðåñöåíöèÿ
Åäèí îñíîâåí ïîäõîä çà ïîëó÷àâàíå íà
èíôîðìàöèÿ çà ñúñòîÿíèåòî íà ôîòîñèíòåòè÷íèÿ
àïàðàò îò õëîðîôèëíàòà ôëóîðåñöåíöèÿ ñå çàêëþ÷àâà
â ÷èñëåí àíàëèç íà ïàðàìåòðèòå íà èíäóêöèîííèÿ
ïðåõîä ïðè îñâåòÿâàíå íà òúìíèííîàäàïòèðàíè
18
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Ôèã. 2. Òèïè÷åí çàïèñ íà åäíîâðåìåííî ðåãèñòðèðàíèòå èíäóêöèîííè êðèâè íà áúðçàòà ôëóîðåñöåíöèÿ (ÁÔ), ñèãíàëà íà
ìîäóëèðàíîòî ðàçñåéâàíå ïðè 820 nm (ÌÐ820) è çàáàâåíàòà ôëóîðåñöåíöèÿ (ÇÔ), ðåãèñòðèðàíà â 5 âðåìåâè äèàïàçîíà.
Çàïèñúò å íàïðàâåí íà òúìíèííîàäàïòèðàíî (60 min) êîíòðîëíî ôàñóëåâî ðàñòåíèå ïðè èíòåíçèòåò íà âúçáóæäàíåòî 3000
μmol.m-2.s-1. Ñ ãîëåìè ïðàçíè êðúã÷åòà ñà îòáåëÿçàíè õàðàêòåðèñòè÷íèòå òî÷êè íà ÈÊ íà ÁÔ (FO, FJ, FI, FM) è íà ÇÔ (I1 ÷ I5)
Fig. 2. Typical experimental protocol for simultaneous record of induction curves of prompt fluorescence (PF), signal of reflection of
modulated light at 820 nm (MR820) and delayed fluorescence (DF) registered at 5 time intervals. The record was made using dark
adapted (60 min) leaf from control bean plant at actinic light intensity of 3000 μmol.m-2.s-1. With the large empty circles the
fluorescence values in characteristic points of fluorescence transient (FO, FJ, FI, FM) and DF induction curves (I1 ÷ I5) are marked
ðàñòåíèÿ. Ñòðàññåð å ðàçðàáîòèë òåîðèÿ íà
åíåðãåòè÷íèòå ïîòîöè ïðè ôîòîñèíòåçàòà (Strasser,
1978), íà áàçàòà íà êîÿòî å ñúçäàäåí JIP òåñò,
ïîçâîëÿâàù îò èíòåíçèòåòà íà ôëóîðåñöåíöèÿòà â
ðàçëè÷íè ìîìåíòè íà ïðåõîäà îò òúìíèííîàäàïòèðàíî
êúì ñâåòëèííî ñúñòîÿíèå äà ñå èç÷èñëÿâàò âàæíè
õàðàêòåðèñòèêè íà ôîòîñèíòåòè÷íèÿ àïàðàò (Strasser et
al., 1995, 2004, 2010; Tsimilli-Michael and Strasser, 2008).
Ïðè îñâåòÿâàíå íà òúìíèííîàäàïòèðàí
ôîòîñèíòåçèðàù îáåêò ñ ôîòîñèíòåòè÷íî àêòèâíà
ñâåòëèíà â òå÷åíèå íà åäíà ñåêóíäà èíòåíçèòåòúò
íàðàñòâà îò ìèíèìàëíàòà íà÷àëíà ñòîéíîñò,
îáîçíà÷àâàíà êàòî F0, äî ìàêñèìàëíà FM, ïðåìèíàâàéêè
ïðåç ìåæäèííè ôàçè ñúñ ñòîéíîñòè FJ è FI.
Òèïè÷íà ïîëèôàçíà O-J-I-P êðèâà íà
íàðàñòâàíåòî íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ å
ïðåäñòàâåíà íà ïîëóëîãàðèòìè÷íà âðåìåâà ñêàëà îò 50
μs äî 1 s (ôèã. 2 è 3). Õàðàêòåðèñòè÷íèòå ñòîéíîñòè íà
ôëóîðåñöåíöèÿòà, îáîçíà÷åíè ñ áóêâèòå J, I è P, ñå
èçïîëçâàò â JIP òåñòà çà ïðåñìÿòàíå íà ñòðóêòóðíè è
ôóíêöèîíàëíè ïàðàìåòðè. Èçïîëçâàíèòå ôëóîðåñöåíòíè
ñòîéíîñòè ñà F0 (50 μs), FJ (2 ms), FI (30 ms) è
ìàêñèìàëíèÿò èíòåíçèòåò FP = FM (â ìîìåíò tFmax).
Âúçìîæíîñòèòå çà ïîëó÷àâàíå íà èíôîðìàöèÿ
çà ñúñòîÿíèåòî íà ÔÑÀ îò ôîðìàòà íà èíäóêöèîííàòà
êðèâà ñà îáîáùåíè â òàáë. 1.
Ïðèëîæèõìå JIP òåñò çà àíàëèç íà ôèçèîëîãè
÷íîòî ñúñòîÿíèå íà ôîòîñèíòåòè÷íèÿ àïàðàò â
ëèñòà îò ôàñóëåâè ðàñòåíèÿ. Ñðàâíèõìå ðåçóëòàòèòå
çà ëèñòà îò êîíòðîëíè ðàñòåíèÿ (âæ. ôèã. 1) è ïúðâè÷íè
ëèñòà îò ðàñòåíèÿ, äåêàïèòèðàíè ñëåä ïîÿâàòà íà
ïúðâèÿ ñëîæåí ëèñò. Ðåçóëòàòèòå ñà ïðåäñòàâåíè â
òàáëèöà 2.
Äàííèòå ïîêàçâàò, ÷å â ïúðâè÷íèòå ëèñòà îò
äåêàïèòèðàíèòå ðàñòåíèÿ àêòèâíîñòòà íà ÔÑÀ ïî
âñè÷êè èçñëåäâàíè ïàðàìåòðè äîñòîâåðíî íàäâèøàâà
òåçè ïðè êîíòðîëíèòå. Îáùàòà åôåêòèâíîñò íà
òðàíñôîðìàöèÿòà íà åíåðãèÿòà å íàä òðè ïúòè ïîâèñîêà
â äåêàïèòèðàíèòå ëèñòà. Ïàðàìåòúðúò RC/ABS
ïîêàçâà, ÷å ïðè òÿõ èìà ñ îêîëî 30% ïîâå÷å àêòèâíè
ðåàêöèîííè öåíòðîâå íà åäèíèöà õëîðîôèëíà
êîíöåíòðàöèÿ è ñå ôîðìèðàò ñ îêîëî 20% ïîâå÷å
åëåêòðîííè ïðåíîñèòåëè (PQ ïóë è NADP), êîèòî
îáñëóæâàò âñåêè ðåàêöèîíåí öåíòúð. Ïðè÷èíàòà çà òîâà
ìîæå äà áúäå çàáàâåíîòî ñòàðååíå íà ðàñòèòåëíèòå
êëåòêè â äåêàïèòèðàíèòå ëèñòà (Yordanov et al., 2008).
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
19
Òàáëèöà 1. Îñíîâíè èíôîðìàòèâíè ïàðàìåòðè íà áàçàòà íà JIP òåñòà è íà÷èíè çà èç÷èñëÿâàíåòî èì
Table 1. Main informative parameters of JIP-test and formulas for their calculation
(ïðîäúëæàâà íà ñòð. 20)
Регистрирани параметри
Параметър
Регистрира се
Какво означава, каква е получаваната
информация
F0
FK
FJ
FI
FM = FP
Area
на 20 µs
на 300 µs
на 2 ms
на 30 ms
на ~300 ÷
700 ms
( ) t F F
M t t
t M
Δ ⋅ ∑ −
=
Ниво на Фл, когато QA е окислен (отворено
състояние на РЦ на ФС II). Пропорционално е на
хлорофилната концентрация
Преходно ниво, отразяващо скоростта на
дониране на електрона към P680. При забавяне на
преноса нараства
Ниво на Фл, когато скоростта на улавянето на
енергията на възбуждането в отворените РЦ на
ФС II се изравнява със скоростта на
реокислението на −
A Q от вторичните електронни
акцептори ( −
B Q , PQ)
Ниво на Фл, когато скоростта на улавянето на
енергията на възбуждането в отворените РЦ на
ФС II се изравнява със скоростта на
реокислението на PQ.H2 от ФС I
Ниво на Фл, когато QA е редуциран (затворено
състояние на РЦ на ФС II)
Максимална комплементарна площ над
индукционната крива до ниво F = FM
Изчислявани параметри
Параметър Формула Какво означава, каква е получаваната
информация
Fυ
FV
Sm
Vt
M0
Fυ ≡ Ft − F0
FV ≡ FM − F0
Sm = Area/FV
Vt ≡ Fυ/FV ≡
0 M
0 t
F F
F F
−
−
( )
s 50 M
0
0
F F
t / F
M
µ
Δ Δ
−
=
( )
s 50 M
s 50 s 300
F F
F F 4
µ
µ µ
−
− ⋅
=
Вариабилна Фл в момент t на регистрация на
индукционната крива
Максимална вариабилна флуоресценция
Нормализирана площ над индукционната крива
Относителна вариабилна флуоресценция в
момент t
Апроксимиран начален наклон на индукционната
крива ( в ms
−1
). Пропорционален на скоростта на
първичната фотохимична реакция в РЦ на ФС II
20
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
(ïðîäúëæàâà îò ñòð. 19)
Биофизични параметри
Параметър Формула Какво означава, каква е получаваната
информация
Po ϕ
Eo ϕ
Ro ϕ
RC
EC
ABS
RC
PIABS
PItotal
M
0 M
Po
F
F F −
= ϕ
M
J M
Eo
F
F F −
= ϕ
M
I M
Ro
F
F F −
= ϕ
RC
EC
=Sm=Area/FV
0
J
Po
M
V
ABS
RC
ϕ =
Eo
Eo
Po
Po
ABS
1 1 ABS
RC
PI
ϕ
ϕ
ϕ
ϕ
−
⋅
−
⋅ =
Ro
Ro
ABS total
1
PI PI
ϕ
ϕ
−
⋅ =
Максимален квантов добив на първичната
фотохимична реакция
Квантов добив на електронния транспорт след
QA – отразява вероятността, с която уловеният
квант ще задвижи електронния транспорт след
QA
Квантов добив на електронния транспорт след
PQ – отразява вероятността, с която
уловеният във ФС II квант ще предизвиква
електронен транспорт от PQ през ФС I към
акцепторите на ФС I
Брой на електронните преносители (EC) в
електрон-транспортната верига от ФС II до
акцепторите на ФС I
Изчислява се като брой на електроните,
подадени в електрон-транспортната верига от
РЦ на ФС II за пълна редукция на
преносителите
Относителен брой на QA-редуциращите РЦ на
ФС II на единица от антенния хлорофил на ФС
II Служи за мярка на активните реакционни
центрове
Индекс на производителност – потенциал за
превръщане на енергията на погълнатия във
ФС II светлинен квант в окислително-
редукционна енергия на електронните
акцептори. Служи за мярка на активността на
ФС II и междусистемната електрон-
транспортна верига
Тотален индекс на производителност –
потенциал за превръщане на енергията на
погълнатия във ФС II светлинен квант в
окислително-редукционна енергия на
електронните акцептори на ФС I. Служи за
мярка на сумарната активност на ФС II, ФС I и
междусистемната електрон-транспортна
верига

22
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Äðóã ïðîäóêòèâåí ïîäõîä çà àíàëèç íà ðåçóëòàòèòå îò
èíäóêöèîííèòå ïðåõîäè íà õëîðîôèëíàòà
ôëóîðåñöåíöèÿ, êîéòî å äîáðå ïðèëîæèì ïðè àíàëèç
íà ñòðåñîâè åôåêòè, å ïðåäñòàâÿíåòî íà êðèâè,
íîðìèðàíè â äâå òî÷êè, íàïðèìåð ïðè F0 è ïðè FM, è
ïðåñìÿòàíå íà äèôåðåíöèàëíà êðèâà, ïîêàçâàùà
ðàçëèêàòà ìåæäó Ft (ñòðåñèðàíà ïðîáà) è Ft (êîíòðîëà).
Íà ôèã. 3 ñà ïîêàçàíè âðåìåâè ôóíêöèè,
ïðåäñòàâëÿâàùè ðàçëèêèòå ìåæäó ôëóîðåñöåíòíèÿ
ñèãíàë â ëèñòà îò äåêàïèòèðàíè ôàñóëåâè ðàñòåíèÿ,
òðåòèðàíè ðàçëè÷íî âðåìå ñ ïîâèøåíà òåìïåðàòóðà, è
â êîíòðîëíè ëèñòà.
 äèôåðåíöèàëíèòå êðèâè íà îáðàáîòåíèòå ïðè
òåìïåðàòóðà 50°Ñ ëèñòà ñå ïîÿâÿâà èçðàçåí ìàêñèìóì
ïðè îêîëî 300 μs (ôèã. 4, ôèã. 6). Âèñî÷èíàòà íà ïèêà
ïðàêòè÷åñêè ìîíîòîííî íàðàñòâà ñ óâåëè÷àâàíå íà
ïðîäúëæèòåëíîñòòà íà òðåòèðàíåòî. Òîçè ìàêñèìóì
î÷åâèäíî ïðåäñòàâëÿâà òåðìîèíäóöèðàíà ïîÿâà íà Ê
ïèêà, êîéòî ñå ñâúðçâà ñ èíàêòèâàöèÿ íà
âîäîðàçöåïâàùèÿ êîìïëåêñ âúâ ÔÑ II (Strasser, 1997).
Ñìÿòà ñå, ÷å çàáàâÿíåòî íà äîíèðàíå íà åëåêòðîíè êúì
P680+ ïðè ôóíêöèîíèðàùà àêöåïòîðíà ñòðàíà íà ÔÑ II
âîäè äî ôîðìèðàíå íà îòíîñèòåëíî âèñîêè
Ôèã. 4. Äèôåðåíöèàëíè èíäóêöèîííè êðèâè, ïðåäñòàâÿùè
ïðîìåíè â õëîðîôèëíàòà ôëóîðåñöåíöèÿ, èíäóöèðàíè îò
òðåòèðàíå ñ 50°Ñ. Ëèñòíèòå äèñêîâå îò
äåêàïèòèðàíèòå ôàñóëåâè ðàñòåíèÿ ñëåä 1 h òúìíèííà
àäàïòàöèÿ ñå ïîñòàâÿò âúðõó ìåòàëíà ïëàñòèíà ñ
êîíòðîëèðàíà òåìïåðàòóðà (50°Ñ) è ñëåä îïðåäåëåíî
âðåìå ñå èçìåðâà èíäóêöèîííàòà êèíåòèêà íà
õëîðîôèëíàòà ôëóîðåñöåíöèÿ. Èíòåíçèòåòúò íà
âúçáóæäàùàòà ñâåòëèíà å 5000 μmol.m-2.s-1
Fig. 4. Differential induction curves presenting changes in
chlorophyll fluorescence that are induced by 50°Ñ treatment
bean leaf. 1 h dark adapted segments of primary leaf from
decapitated bean plant were placed on metal plate with
controlled temperature of 50°Ñ and after definite time
(showed in the legend) the induction curve of chlorophyll
fluorescence was recorded at actinic light intensity of 5000
μmol.m-2.s-1
êîíöåíòðàöèè íà êàòèîí-ðàäèêàëà íà õëîðîôèëà íà
ðåàêöèîííèÿ öåíòúð (â ðàìêèòå íà ïúðâèòå 300 μs),
êîéòî å àêòèâåí ãàñèòåë íà âúçáóäåíèòå ñúñòîÿíèÿ íà
õëîðîôèëà è îòòàì – äî íàìàëÿâàíå íà èíòåíçèòåòà íà
ôëóîðåñöåíöèÿòà. Îñâåí íà òîçè åôåêò îòðèöàòåëíèÿò
ñäâîåí ïèê ïðè îêîëî 10 è 50 ms ìîæå äà ñå äúëæè îùå
è íà òåðìîèíäóöèðàíî óñêîðÿâàíå íà åëåêòðîííèÿ
ïðåíîñ êàêòî ïðè íåïîñðåäñòâåíîòî ðåîêèñëÿâàíå íà
QA
– îò ïîäâèæíèòå õèíîíè (QB è PQ), òàêà è ïðè
îêèñëåíèåòî íà PQ.H2 îò ÔÑ I.
Ðàçñåéâàíå ïðè 820 nm
Ïî âðåìå íà èíäóêöèîííèÿ ïåðèîä ñèãíàëúò íà
ðàçñåéâàíåòî íà ìîäóëèðàíàòà ñâåòëèíà ñ λ = 820 nm
ïðåòúðïÿâà õàðàêòåðíè ïðîìåíè, îòðàçÿâàùè
èçìåíåíèÿòà â ðåäîêñ-ñúñòîÿíèåòî íà õëîðîôèëà íà
ðåàêöèîííèÿ öåíòúð íà ÔÑ I – P700, è íà åëåêòðîííèÿ
äîíîð – ïëàñòîöèàíèí (Schansker et al., 2003) (âæ. ôèã.
2). Íàìàëÿâàíåòî íà ñèãíàëà íà MR820 1 ms ñëåä
íà÷àëîòî íà îñâåòÿâàíåòî å ñâúðçàíî ñ áúðçîòî
îêèñëÿâàíå íà P700 íà ñâåòëî, òúé êàòî ïðåç òîçè ïåðèîä
ïëàñòîõèíîíîâèÿò ïóë å îêèñëåí è íå ìîæå äà
êîìïåíñèðà âúçíèêâàùèÿ åëåêòðîíåí äåôèöèò âúâ ÔÑ
I. Êúì 30òàòà ms íà èíäóêöèÿòà ÔÑ II ðåäóöèðà PQ-ïóë è
òîé çàïî÷âà äà äîíèðà åëåêòðîíè êúì P700+ è äà ãî
ðåäóöèðà, êîåòî êîðåëèðà ñ áàâíî ïîêà÷âàíå íà ñèãíàëà
íà MR820 (ôèã. 2). Ïðîöåñúò ïðîäúëæàâà, äîêàòî èìà
îêèñëåíè ìîëåêóëè – åëåêòðîííè àêöåïòîðè íà ÔÑ I.
Ïðè íàðóøàâàíå íà ðåàêöèèòå ïî åëåêòðîííèÿ
ïðåíîñ â è îêîëî ÔÑ I èíäóêöèîííàòà êðèâà íà MR820 ñå
ïðîìåíÿ ïî õàðàêòåðåí íà÷èí. Íà ôèã. 5 ñà ïðåäñòàâåíè
ôîòîèíäóöèðàíèòå ïðåõîäè â ñèãíàëà MR820, èçìåðåíè
â ëèñòà îò ôàñóë, çàñóøàâàíè ðàçëè÷íî âðåìå.
Ðàçâèâàùèÿò ñå âîäåí äåôèöèò â ðàñòèòåëíàòà êëåòêà
ñå îòðàçÿâà ïðåäèìíî âúðõó áàâíàòà ôàçà íà
íàðàñòâàíåòî íà ñèãíàëà. Òîâà îçíà÷àâà, ÷å
çàñóøàâàíåòî èíõèáèðà ïðåäèìíî ïðåíîñà íà
åëåêòðîíè êúì ÔÑ I, áåç äà çàñÿãà ñúùåñòâåíî
ôóíêöèîíèðàíåòî íà ðåàêöèîííèÿ é öåíòúð.
Çàáàâåíà ôëóîðåñöåíöèÿ
Åäèí äîïúëíèòåëåí èçòî÷íèê íà èíôîðìàöèÿ
çà ðåàêöèèòå ïî âðåìå íà ñâåòëèííàòà ôàçà íà
ôîòîñèíòåòè÷íèÿ ïðîöåñ å çàáàâåíàòà ôëóîðåñöåíöèÿ,
èçëú÷âàíà â ñóáìèëèñåêóíäåí è ìèëèñåêóíäåí äèàïàçîí
(âæ. Goltsev et al., 2009, è öèòàòèòå â íåãî). Ñâåòëèííèòå
êâàíòè íà ÇÔ ñå èçëú÷âàò îò õëîðîôèëíèòå ìîëåêóëè
íà àíòåííèòå êîìïëåêñè íà ÔÑ II, êîèòî ñà âòîðè÷íî
âúçáóäåíè â ðåçóëòàò íà ðåêîìáèíàöèÿ íà ðàçäåëåíèòå
çàðÿäè â ðåàêöèîííèÿ öåíòúð. ÇÔ, èçëú÷âàíà â 10 μs ÷
10 ms âðåìåâè äèàïàçîí íà ðåãèñòðàöèÿòà, ñå äúëæè
íà îáðàòíèÿ ïðåíîñ íà åëåêòðîíè îò ðåäóöèðàíèÿ
àêöåïòîð (QA
–) êúì îêèñëåíèÿ äîíîð (Z+), à êèíåòèêàòà
íà òúìíèííèÿ ñïàä íà ÇÔ ñå îïðåäåëÿ îò ñêîðîñòèòå íà
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
23
Ôèã. 5. Ôîòîèíäóöèðàíè ïðîìåíè â ðàçñåéâàíåòî ïðè 820
nm, ðåãèñòðèðàíè â îòêúñíàòè ëèñòà îò ôàñóëåâè
ðàñòåíèÿ, çàñóøàâàíè ðàçëè÷íî âðåìå ïðè òåìïåðàòóðà
20-22°Ñ è âúçäóøíà âëàæíîñò 40-50%
Fig. 5. Light induced changes in modulated reflection at 820
nm, registered in detached leaves of bean plants, dried
different times at 20-22°Ñ and air humidity of 40-50%
Ôèã. 6. 3D ïðåäñòàâÿíå íà åäíîâðåìåííî
ðåãèñòðèðàíèòå èíäóêöèîííè êðèâè è êèíåòèêè íà
òúìíèííà ðåëàêñàöèÿ íà ÇÔ â ëèñòà îò êîíòðîëíè
(íåäåêàïèòèðàíè) ðàñòåíèÿ îò ôàñóë. Ëèñòàòà ñà
òúìíèííîàäàïòèðàíè â òå÷åíèå íà 1 h, ñëåä êîåòî
ñïàäîâåòå íà ÇÔ ñà çàïèñâàíè â ðàçëè÷íè ìîìåíòè îò
èíäóêöèîííèÿ ïåðèîä
Fig. 6. 3D view of simultaneously registered induction curves
and dark decays of DF in leaves of control (non-decapitated)
bean plants. The leaves were dark adapted during 1 h and
then the dark decays at different moments of induction period
are recorded
îêèñëèòåëíî-ðåäóêöèîííèòå ðåàêöèè, ñòàáèëèçèðàùè
òåçè çàðÿäè.
Çàòîâà ÷ðåç àíàëèçà íà êðèâèòå íà òúìíèííàòà
ðåëàêñàöèÿ íà ÇÔ ìîæå äà ñå îïðåäåëÿò ñêîðîñòíèòå
êîíñòàíòè íà ðåàêöèèòå, ñòàáèëèçèðàùè ðàçäåëåíèòå
çàðÿäè îêîëî ÐÖ íà ÔÑ II. Àìïëèòóäèòå íà êèíåòè÷íèòå
êîìïîíåíòè íà ÇÔ ñå îïðåäåëÿò îò êîíöåíòðàöèèòå íà
ñâåòåùèòå ñúñòîÿíèÿ íà ÐÖ, à õàðàêòåðèñòè÷íèòå
âðåìåíà íà ñïàäîâåòå ñà îáðàòíîïðîïîðöèîíàëíè íà
ñêîðîñòíèòå êîíñòàíòè íà ðåàêöèèòå, âîäåùè äî
äèñèïàöèÿ íà òåçè ñúñòîÿíèÿ (Goltsev et al., 2009).
Ôèãóðà 5 â òðèìåðíà ãðàôèêà ïðåäñòàâÿ
åäíîâðåìåííî ðåëàêñàöèîííèòå ñïàäîâå íà ÇÔ (ëÿâàòà
äîëíà îñ), èçìåðåíè ïðè ðàçëè÷íà ïðîäúëæèòåëíîñò íà
îñâåòÿâàíåòî, è èíäóêöèîííè êðèâè (ïðîåêòèðàíè âúðõó
ðàâíèíàòà DF intensity vs. JIP time), ïðåñìåòíàòè çà
ðàçëè÷íè èíòåðâàëè íà ðåãèñòðàöèÿòà. Ïðåäèìñòâîòî
íà òîçè íà÷èí íà ïðåäñòàâÿíå å, ÷å ïîçâîëÿâà â
îãðîìíèÿ ìàñèâ îò äàííè âåäíàãà äà ñå ëîêàëèçèðàò
ñïåöèôè÷íèòå ïðîìåíè, êîèòî ñà ðåçóëòàò íàïðèìåð íà
ñòðåñîâî âúçäåéñòâèå.
Ïî âðåìå íà èíäóêöèîííèÿ ïðåõîä ñå ïðîìåíÿò
íå ñàìî àìïëèòóäèòå íà êèíåòè÷íèòå êîìïîíåíòè è
òÿõíîòî ñúîòíîøåíèå, à ñúùî è ñêîðîñòèòå íà ñïàäîâåòå
íà âñÿêà êîìïîíåíòà.
Ñòðåñîâèòå âúçäåéñòâèÿ ïî ñëîæåí íà÷èí
ìîäèôèöèðàò ÇÔ è íåéíèòå êîìïîíåíòè, îêàçâàéêè
âëèÿíèå êàêòî âúðõó àìïëèòóäèòå, òàêà è âúðõó
õàðàêòåðèñòè÷íèòå âðåìåíà. Èíêóáàöèÿòà íà ëèñòíè
äèñêîâå îò ôàñóëåâè ðàñòåíèÿ ïðè ïîâèøåíà
òåìïåðàòóðà ïðîìåíÿ ôîðìàòà íà ÈÊ íà ÇÔ è íà
ðåëàêñàöèîííàòà é êèíåòèêà. Íà òàáë. 3 ñà ïðåäñòàâåíè
äàííè çà âëèÿíèå íà 1- è 2-min èíêóáàöèÿ íà ëèñòíè
äèñêîâå îò äåêàïèòèðàíè ôàñóëåâè ðàñòåíèÿ ïðè 50 °Ñ
âúðõó ïàðàìåòðèòå íà êèíåòèêèòå íà òúìíèííàòà
ðåëàêñàöèÿ íà ÇÔ. Äàííèòå ïîêàçâàò, ÷å íà÷àëíèòå ôàçè
íà èíäóêöèîííèÿ ïðåõîä ñà ïî-÷óâñòâèòåëíè êúì
âèñîêîòåìïåðàòóðíîòî âúçäåéñòâèå. Àìïëèòóäàòà íà
ïúðâèÿ ðåãèñòðèðàí ñëåä 2 ms îñâåòÿâàíå (êîãàòî
íàñòúïâà ôàçàòà J íà ÁÔ) êîìïîíåíò íà ÇÔ ñ
âðåìåæèâîò ò1 = 19 μs íàìàëÿâà äâîéíî, à ñêîðîñòòà íà
ñïàäà ñå çàáàâÿ ñ îêîëî 30% ñëåä 2 min íàãðÿâàíå.
Îùå ïî-äðàñòè÷íî íàìàëÿâà àìïëèòóäàòà íà âòîðèÿ
êîìïîíåíò L2.
 ïåðèîäà íà ôîðìèðàíåòî íà ôàçàòà I íà ÁÔ
íàãðÿâàíåòî ñèëíî óñêîðÿâà ñïàäà íà ÇÔ âúâ âòîðèÿ
êîìïîíåíò ò2. Èçõîæäàéêè îò ïðåäïîëîæåíèåòî, ÷å
20-30 μs ÇÔ êîìïîíåíò îòðàçÿâà ðåàêöèè â äîíîðíàòà
ñòðàíà íà ÔÑ II ïî ñòàáèëèçèðàíåòî íà çàðÿäà íà
ïðåíîñèòåëÿ Z+, a 200–300 μs ÇÔ êîìïîíåíò å ñâúðçàí
ñúñ ñòàáèëèçàöèÿ íà çàðÿäà íà QA
– îò QB (Goltsev et al.,
2009), ïðåäñòàâåíèòå â òàáë. 3 ðåçóëòàòè ìîæå äà ñå
èíòåðïðåòèðàò ïî ñëåäíèÿ íà÷èí: ñëàá âèñîêîòåìïåðàòóðåí
ñòðåñ ïîòèñêà ðåàêöèèòå â äîíîðíàòà
24
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Òàáëèöà 3. Âëèÿíèå íà ïðîäúëæèòåëíîñòòà íà òðåòèðàíåòî ñ âèñîêà òåìïåðàòóðà âúðõó ïàðàìåòðèòå íà
òúìíèííàòà ðåëàêñàöèÿ íà ÇÔ. Ñëåä 1 h òúìíèííà àäàïòàöèÿ ëèñòíè äèñêîâå îò äåêàïèòèðàíèòå ðàñòåíèÿ îò
ôàñóë ñà ïîñòàâÿíè âúðõó ìåòàëíà ïëàñòèíà, ïîääúðæàùà òåìïåðàòóðà 50°Ñ, è ñëåä èíêóáàöèÿ 1 èëè 2 min å
èçìåðâàíà ÇÔ ïðè èíòåíçèòåò íà âúçáóæäàùàòà ñâåòëèíà 5000 μmol.m-2.s-1
Table 3. Effect of high temperature treatment duration on DF dark relaxation parameters. The leaves were dark adapted
during 1 h and then are treated at 50°Ñ for 1 or 2 min. DF dark decays at at different moments of induction period (J, I
and P) are recorded at actinic light intensity of 5000 μmol.m-2.s-1
t,
min
J I P
L1 τ1 L2 L1 τ1 L2 τ2 L1 τ1 L2 τ2
0 23829 0.019 6001 17239 0.023 6607 0.302 7387 0.022 2479 0.269
1 26159 0.021 1939 41197 0.024 3279 0.185 17507 0.027 1901 0.389
2 12856 0.026 1747 20631 0.028 6180 0.094 16178 0.028 2116 0.328
ñòðàíà íà ÔÑ II, íî óñêîðÿâà ïðåíîñà íà åëåêòðîíè
ìåæäó QA
– è QB, à â ðåäóöèðàíî ñúñòîÿíèå íà
ïðåíîñèòåëèòå â åëåêòðîí-òðàíñïîðòíàòà âåðèãà
ñòðåñúò çàáàâÿ ðåàêöèèòå êàêòî â äîíîðíàòà, òàêà è â
àêöåïòîðíàòà ñòðàíà íà ÔÑ II.
ÇÀÊËÞ×ÅÍÈÅ
Àíàëèçèðàíè ñà èíôîðìàöèîííèòå âúçìîæíîñòè
çà ïðèëîæåíèå íà íîâèÿ ìíîãîôóíêöèîíàëåí
ôëóîðèìåòúð mPEA çà îêà÷åñòâÿâàíå íà ñúñòîÿíèåòî
íà ðàñòåíèÿ. Ïîäáðàíè ñà èíôîðìàöèîííè ïîêàçàòåëè,
ïàðàìåòðè íà JIP òåñòà, êèíåòèêè íà ÇÔ, ôàçè íà
ôîòîèíäóöèðàíèòå ïðîìåíè â ÌÐ820, îáõâàùàùè øèðîê
ñïåêòúð õàðàêòåðèñòèêè â ñâåòëèííàòà ôàçà íà
ôîòîñèíòåçàòà, êîèòî ìîãàò äà ñå èçïîëçâàò êàòî îñíîâà
çà îöåíêà íà ñòðåñîâàòà ðåàêöèÿ â ðàñòåíèåòî è çà
ñúçäàâàíå íà åôåêòèâíè êðèòåðèè çà òîëåðàíòíîñòòà
íà ðàñòåíèåòî êúì ïðèëàãàíèÿ ñòðåñ.
ËÈÒÅÐÀÒÓÐÀ
Ãàåâñêèé, Í. À., Ìîðãóí Â. Í., 1993. Èñïîëçîâàíèå
ïåðåìåííîé è çàìåäëåííîé ôëóîðåñöåíöèè
õëîðîôèëëà äëÿ èçó÷åíèÿ ôîòîñèíòåçà ðàñòåíèé.
– Ôèçèîëîãèÿ ðàñòåíèé, 40: 136–145.
Butler, W. L., 1972. On the primary nature of fluorescence
yield changes associated with photosynthesis. – In: Proc
Natl Acad Sci USA, 69:3420–3442.
Goltsev, V., Zaharieva I., P. Chernev and R. Strasser, 2009.
Delayed fluorescence in photosynthesis. – Photosynth
Res, 101:217-232.
Kautsky, H., Hirsch A., 1931. Neue Versuche zur
Kohlensäuereassimilation. – Naturwissenshaften, 48:
964.
Lavorel, J., 1975. Luminescence. – In: Govindjee (ed)
Bioenergetics of photosynthesis. Academic Press, New
York, pp. 223–317.
Malkin, S., 1979. Delayed luminescence. – In: Trebst A,
Avron M (eds) Photosynthesis I. Photosynthetic electron
transport and photophosphorilation. Acad.Press, NY, pp
473–491.
Radenovic, C., Markovic D., Jeremic M, 1994. Delayed
chlorophyll fluorescence in plant models. –
Photosynthetica, 30: 1–24.
Schansker, G., Srivastava A., Govindjee, Strasser R. J.,
2003. Characterization of 820 nm transmission induction
curves in pea leaves: kinetic separation between
plastocyanin and P700 contributions. – Funct. Plant Biol.
30: 1–10.
Schreiber, U., Schliwa U., Bilger W., 1986. Continuous
recording of photochemical and non-photochemical
chlorophyll fluorescence quenching with a new type of
modulation fluorimeter. – Photosynth. Res., 10: 51–62.
Strasser, B. J., Strasser R. J., 1995. Measuring fast
fluorescence transients to address environmental
questions: the JIP test. – In: P. Mathis (Ed.),
Photosynthesis: from Light to Biosphere: Proceedings
of the Xth International Photosynthesis Congress,
Montpellier-France 1995, Kluwer Academic Publishers,
The Netherlands, vol. V, pp. 977–980.
Strasser, R. J., Srivastava A., Govindjee, 1995. Polyphasic
chlorophyll a fluorescence transient in plants and
cyanobacteria. – Photochem. Photobiol., 61: 32–42.
Strasser, R. J., 1978. The grouping model of plant
photosynthesis. – In: G. Akoyunoglou (Ed.), Chloroplast
Development, Elsevier, North Holland, pp. 513–524.
Strasser, R. J., Srivastava A., Tsimilli-Michael M., 2000.
The fluorescence transient as a tool to characterize and
screen photosynthetic samples. – In: M. Yunus, U.
Pathre, P. Mohanty (Eds.), Probing Photosynthesis:
Mechanism, Regulation and Adaptation, Taylor and
Francis, London, UK, pp. 443–480.
Strasser, R. J., Tsimilli-Michael M., Qiang S., Goltsev V.,
2010. Simultaneous in vivo recording of prompt and
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
25
delayed fluorescence and 820 nm reflection changes
during drying and after rehydration of the resurrection
plant Haberlea rhodopensis. – BBA, 1797: 1313-1326.
Strasser, R. J., Tsimilli-Michael M., Srivastava A., 2004.
Analysis of the chlorophyll a fluorescence transient. –
In: G.C. Papageorgiou, Govindjee (Eds.), Advances in
Photosynthesis and Respiration Series (Govindjee –
Series Editor), Chlorophyll a Fluorescence: a Signature
of Photosynthesis, vol. 19, Springer, Dordrecht, The
Netherlands, pp. 321–362.
Strehler, B. L., Arnold W., 1951. Light production by green
plants. – J. Gen. Physio, 34: 809–820.
Tsimilli-Michael, M., Strasser R. J., 2008. In vivo
assessment of plant’s vitality: applications in detecting
and evaluating the impact of Mycorrhization on host
plant’s. – In: A. Varma (Ed.), Mycorrhiza: State of the
Art, Genetics and Molecular Biology, Eco-Function,
Biotechnology, Eco-Physiology, Structure and
Systematics, 3rd edition, Springer, Dordrecht, The
Netherlands, pp. 679–703.
Yordanov, I., Goltsev V., Stefanov D., Chernev P., Zaharieva
I., Kirova M., Gecheva V., Strasser R. J., 2008.
Ðàáîòàòà å èçïúëíåíà áëàãîäàðåíèå íà
ôèíàíñîâàòà ïîäêðåïà íà Íàöèîíàëíèÿ ôîíä çà
íàó÷íè èçñëåäâàíèÿ (ïðîåêò ¹ DO 02-137/
15.12.2008).
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Íåâåíà Ñòîåâà
E-mail: stoeva_au_bg@yahoo.ca
Preservation of PS II Electron Transport from
Senescence-Induced Inactivation in Primary Leaves
after Decapitation and Defoliation of Bean Plants. – J.
Plant Physiol., 165 (18): 1954-1963.
Zaharieva, I., Goltsev V., 2003. Advances on Photosystem
II investigation by measurement of delayed chlorophyll
fluorescence by a phosphoroscopic method. –
Photochem. Photobiol. 77(3): 292-298.
26
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
27
ÄÈÍÀÌÈÊÀ ÍÀ ÀÍÒÈÎÊÈÑËÈÒÅËÍÈß ÎÒÃÎÂÎÐ ÍÀ IN VITRO ÐÀÑÒÅÍÈß, ÏÎÄËÎÆÅÍÈ ÍÀ ÑÂÅÒËÈÍÅÍ
ÑÒÐÅÑ
DIFFERENT TIMINGS OF ANTIOXIDATIVE RESPONSE OF IN VITRO PROPAGATED PLANTS UNDER LIGHT
STRESS
Ëþèñà Êàðâàëõî, Ñîíÿ Ñàíòîñ, Èîðãå Âèëåëà, Ñàðà Àìàíöèî*
Luisa C. Carvalho, Sonia Santos, B. Jorge Vilela, Sara Amancio*
Àãðîíîìè÷åñêè èíñòèòóò, Òåõíè÷åñêè óíèâåðñèòåò, Ëèñàáîí, Ïîðòóãàëèÿ
DBEB/CBAA, Instituto Superior de Agronomia, Universidade Técnica de Lisboa
Lisboa, Portugal
*E-mail: samport@isa.utl.pt
Ðåçþìå
Ðàñòåíèÿòà îò òðè âèäà èêîíîìè÷åñêè âàæíè êóëòóðè - Vitis vinifera L., Solanum lycopersicon Mill. è Nicotiana
benthamiana L., áÿõà îòãëåæäàíè in vitro ïðè ñëàáà ñâåòëèíà (50 μmol m-2s-1) è âïîñëåäñòâèå ïðåõâúðëåíè íà ñèëíà
ñâåòëèíà (200 μmol m-2s-1) â ïðîäúëæåíèå íà 7 äíè. Çà èäåíòèôèöèðàíå íà ñèìïòîìèòå íà îêèñëèòåëíèÿ ñòðåñ è
âúçñòàíîâÿâàíå ñëåä ñòðåñà áåøå îò÷åòåíà àêòèâíîñòòà íà åíçèìèòå, ñâúðçàíè ñ àñêîðáàò-ãëóòàòèîíîâèÿ öèêúë,
êàêòî è åêñïðåñèÿòà íà ãåíè, êîäèðàùè òåçè åíçèìè. Àêòèâíîñòòà íà SOD, CAT è APX áåøå ïî-âèñîêà íà 2-3-è è 6-
òè äåí â S. lycopersicon è íà 1-2-è è 5-7-ìè äåí â N. benthamiana è V. vinifera. Åêñïðåñèÿòà íà ñúîòâåòíèòå òðàíñêðèïòè
ïîêàçâàò çíà÷èòåëíî óâåëè÷àâàíå ïðåç ïúðâèÿ äåí â S. lycopersicon, äîêàòî â N. benthamiana è V. vinifera áåøå
óñòàíîâåíà äâóâúëíîâà çàâèñèìîñò ñ ïèêîâå â ïúðâèÿ è ñåäìèÿ äåí. Òåçè ðåçóëòàòè ïîêàçâàò, ÷å äâàòà âèäà
Solanaceae ïîêàçâàò ðàçëè÷íè ñòðàòåãèè, êîãàòî ñà ïîäëîæåíè íà ñâåòëèíåí ñòðåñ, äîêàçâàùè óíèêàëíîñòòà íà
îòãîâîðà íà âñåêè âèä. Îñâåí òîâà ïîâåäåíèåòî íà N. benthamiana êîðåñïîíäèðà òÿñíî ñ ðåàêöèÿòà íà âèäîâå êàòî
V. vinifera.
Abstract
Three plant species, the worldwide economically relevant crops Vitis vinifera L.and Solanum lycopersicon Mill. and
the model tobacco Nicotiana benthamiana L. were propagated in vitro under low light (50 μmol m-2s-1) and transferred to HL
(200 μmol m-2s-1) for 7 days. To identify oxidative stress symptoms and recovery we monitored the activity of enzymes
related with the ascorbate-glutathione cycle and the expression of the genes that code for these enzymes. SOD, CAT and
APX activities were higher on d2-3 and d6 in S. lycopersicon and on d1-2 and d5-7 in N. benthamiana and V. vinifera. The
expression of the respective transcripts showed a significant increase on d1 in S. lycopersicon while in N. benthamiana and
V. vinifera a bimodal pattern was found, with peaks on d2 and d7. These results indicate that the two Solanaceae display
different strategies when responding to light stress, evidencing further the uniqueness of the response of each species.
Moreover, the behaviour of N. benthamiana falls closely into the pattern of a woody species such as V. vinifera.
Êëþ÷îâè äóìè: àñêîðáàò-ãëóòàòèîíîâ öèêúë, ex vitro, ôîòîîêèñëèòåëåí ñòðåñ, real-time PCR.
Key words: asc-glut cycle, ex vitro growth, photooxidative stress, real-time PCR.
INTRODUCTION
In plants, photooxidative stress caused by
exposure to high light can occur in structures emerging from
tissues under dark or low light conditions. For example,
leaves in shade in the canopy can experience large
fluctuations in irradiance (Demmig-Adams and Adams,
1992). In these situations excitation energy in excess of
that required for photosynthetic metabolism creates the
potential for the photoinhibition of photosynthetic electron
transport (Niyogi, 1999; Mullineaux et al., 2006; Ort and
Baker, 2002). As a consequence, the excessive production
of reactive oxygen species (ROS) can cause oxidative
damage to cellular components. The involvement of ROS
in several biotic and abiotic stresses is well documented
(for review see Mittler et al., 2004), but aside from oxidative
damage, they play an important role in the control and
regulation of biological processes, such as growth and
development, cell cycle, programmed cell death and
28
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
hormone signalling. The role of ROS as signalling molecules
suggests that, during the course of evolution, plants
achieved a high degree of control over ROS toxicity. This
control appears to require a large gene network, whose
functioning is beginning to be unveiled.
The wide network of antioxidants providing
protection against ROS consists mostly of enzymes such
as superoxide dismutase (SOD), that scavenges the
superoxide radical (O2
-·), and ascorbate peroxidase (APX)
and catalase (CAT), that detoxify H2O2 (Niyogi, 1999;
Panchuk et al., 2002). In addition, lipid soluble, membraneassociated
antioxidants (eg tocopherols, â-carotene and
ubiquinone) and water soluble antioxidants (eg glutathione
and ascorbate) play a role in preventing lipid oxidation and
accumulation of ROS (Niyogi, 1999). L-ascorbic acid (AsA)
is an abundant metabolite that plays important roles both
in stress physiology and in growth and development. In the
detoxification of ROS, AsA has the capacity to directly
eliminate several different ROS including singlet oxygen,
superoxide and hydroxyl radicals (Padh, 1990). Indirectly
it eliminates H2O2 through the activity of APX. Glutathione
(ã-L-Glu-L-Cys-Gly, GSH), aside from being a major
reservoir of non-protein reduced sulphur, has crucial
functions in cellular defence and protection, preventing the
denaturation of proteins caused by stress imposed oxidation
of thiol groups. Glutathione reacts chemically with a range
of ROS, while enzyme-catalysed reactions link GSH to the
detoxification of H2O2 in the ascorbate-glutathione cycle
(asc-glut, Noctor et al., 2002) which keeps the cellular pools
of AsA and GSH in their reduced state by a set of enzymes
using NAD(P)H such as monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR) and
glutathione reductase (GR). The asc-glut cycle besides
impairing oxidative stress also regulates photosynthesis in
response to light conditions through the dissipation of
excess excitation energy (Asada, 1999). The response to
photooxidative stress varies between species and ontogenic
phases. Apparently, different genes coding for antioxidative
enzymes have evolved, although the regulatory signalling
systems could still be similar (Karpinski et al., 1997).
Usually, investigations focused on the response
to excess light use short-term, artificial high irradiances
(Karpinski et al., 1997; Chang et al., 2004) instead of a
more physiological continuous stress-inducing intensity.
Plants cultured in vitro develop in heterotrophic conditions
under very low light intensities. In vitro propagated plants
are potentially capable of attaining measurable
photosynthetic rates (van Huylenbroeck et al., 2000;
Carvalho et al., 2001), however this capacity does not
prevent the symptoms of photoinhibition that appear when
plants are subjected to the higher light intensities applied
upon transfer to ex vitro (Carvalho et al., 2001).
Furthermore, in vitro conditions predispose plants to a
down-regulation of photosynthesis, either resulting from a
lack of CO2 in the culture vessels, or from the feedback
inhibition of Calvin cycle enzymes by the sucrose supply in
the media. Thus, the transition phase can be used to
comprehensively study the response to high light stress
and the recovery period when plants adjust to the new
conditions. We have studied in vitro propagated plants of
grapevine (Vitis vinifera L.), tobacco (Nicotiana benthamiana
L.) and tomato (Solanum lycopersicon Mill.) and monitored
the activity of enzymes related with the ascorbateglutathione
cycle and the expression of the genes that code
for these enzymes.
MATERIAL AND METHODS
Plant material and sampling
Nodal buds of Vitis vinifera L., var. Touriga Nacional
were used as explants for in vitro multiplication. Seeds of
Nicotiana benthamiana L. and Solanum lycopersicon Mill.
were germinated in vitro for 3 weeks in Murashige and
Skoog (1962), MS (Duchefa Biochemie, Haarlem, NL) basal
medium. In vitro shoots were sub-cultured every four weeks
into MS basal medium supplemented with 0.5 μM
á-naphthaleneacetic acid (NAA) and 2.0 μM
benzylaminopurine (BAP) for N. benthamiana and V.
vinifera and 4.5 μM BAP for S. lycopersicon. Shoots were
elongated in MS with BAP at 1.67 μM for two weeks. For
root induction, explants received a supplement of 2 μM NAA
for 5 days. Cultures were kept in a growth chamber at a
photosynthetic photon flux density (PPFD) of 45 ± 5
μmol m-2s-1 and a photoperiod of 16/8h. Temperature was
25 ± 1ºC during the light and 22 ± 1ºC during the dark.
Ex vitro root expression took place for seven days
as in Carvalho et al. (2001), with the sole exception of PPFD
at plant level, which was 200 ± 10 μmol m-2 s-1. The analyses
were performed in samples of leaves at time zero of ex
vitro growth (d0) and on d1, d2, d4 and d7, collected in the
middle of the light period.
Native PAGE, activity staining and quantification
Leaf material (0.5 g) was ground in liquid N2 in the
presence of 50% (w/w) polyvinylpolypyrrolidone.. For
extraction, 5 mL of ice-cold 350 mM Tris-HCl buffer pH 8.0
supplemented with 0.2 mM phenylmethylsulphonylfluoride,
20 mM sodium ethylenediaminetetraacetate, 11 mM sodium
diethyldithiocarbamate and 15 mM cysteine were used.
Homogenates were centrifuged at 27 000 g for 10 min at
4 ºC. The supernatants were desalted through PD-10
columns (Amersham Pharmacia Biotech, Little Chalfont,
UK). Protein concentration was determined according to
Bradford (1976), using a commercial kit (Bio Rad, Hercules,
CA). Isoforms of SOD, CAT, GR and APX were separated
using nondenaturing polyacrylamide gels by the procedure
of Laemmli (1970). Equal amounts of protein extracts (25
μg) were loaded on 7% (CAT) or 10% (GR, SOD and APX)
polyacrylamide gels.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
29
For SOD, the gel was stained according to Rao et
al. (1996) and visualization was performed according to
Donahue et al. (1997). To identify KCN- and H2O2-sensitive
isoforms, the incubation solution contained 3 mM KCN or
5 mM H2O2, respectively. KCN inhibits CuZnSOD while both
CuZnSOD and ISOD are sensitive to H2O2, allowing the
discrimination of MnSOD. To visualize CAT activity, gels
were stained by the procedure of Anderson et al. (1995)
and isoforms of APX and GR were visualized according to
Carvalho et al. (2006). Relative quantification of all
isoenzyme activities was determined using the software
Quantity One (Bio-Rad, Hercules, CA) in comparison to
control (d0=100%).
RNA isolation, cDNA preparation and Real-Time PCR
Total RNA from leaves was extracted by adapting
the method described by Gevaudant et al. (1999). RNA
samples were treated with RQ1 RNase-Free DNase
(Promega, Madison, WI) and reverse transcribed using
random hexamers and Superscript II RNase H- reverse
transcriptase (Invitrogen, Carlsbad, CA) according to the
manufacturer’s recommendations.
The real-time PCR was performed using 0.5 μM
gene-specific primers and master mix iQ SYBR Green
Supermix (Bio-Rad, Hercules, CA) in an iQ5 Real Time
PCR (Bio-Rad, Hercules, CA). In order to compare data
from different PCR runs or cDNA samples, CT values were
normalized to the CT value of Act2, a housekeeping gene
expressed at a relatively high and constant level. Gene
expression was calculated using the ΔΔCT method. Results
are presented as fold variation in relation to control (d0).
Three independent measures were made for each time point
(n=3). The results were statistically evaluated through
variance analysis comparing the days. Significant values
were discriminated with Tukey’s post test, p<0.01, using
GraphPad InStat (GraphPad Software, CA).
RESULTS AND DISCUSSION
To analyze the effects of the transfer of
micropropagated plants to an autotrophic environment
under high light, the functioning of the antioxidative network
was assessed during the first week of ex vitro growth. We
quantified the mRNA levels of nine genes encoding ROS
scavenging and antioxidant enzymes using quantitative real
time RT-PCR. In parallel, the activities of their isoforms by
activity staining in non-denaturing polyacrylamide gels were
also determined. The timing of up-regulation of antioxidative
genes after transfer to ex vitro differed between the three
species. In tomato some transcripts increased up to 250
fold immediately after the onset of high light (d1), declining
thereafter, while tobacco and grapevine showed a bimodal
pattern of transcript expression with peaks measured
between 10- to 30-fold variation and 5- to 16-fold,
respectively, at d2 and d7 (Fig 1).
In tomato three isoforms of APX were identified, two
constitutive and up-regulated in the second half of the
experiment (APX-A and APX-B) and one repressed (APXC),
from d2 onwards (Table 1). From the relative positions
of the bands and by comparison with Arabidopsis isozymes
(e.g. Panchuk et al., 2002), it was deduced that APX-C
corresponds to the cytosolic APX1. In tobacco, on the other
hand, only two isoforms (APX-A and APX-B) were present,
both constitutive and without noticeable variation. Three
different isoforms of APX were detected in grapevine, one
constitutive (C) and two induced (A and B). The band APXC
corresponds to the cytosolic APX1 and was detected
since d0, reaching a maximum on d1. After the minimum
level on d4 a second peak was detected on d7. The induced
isoforms APX-A and APX-B were detected on d1 and
increased their activity on d2, after which they were no
longer detected. The activation of the antioxidative response
through the asc-glut cycle was further confirmed by the
induction of mRNA expression (Fig. 1), tobacco APX3
expression was significantly high on d2 and d7 and APX1
showed a tenfold increase on d7 (Fig 1). In grapevine APX1
was significantly upregulated from on d1 and d7; APX3
expression increased from d2. In tomato, both the activity
and gene expression of cytosolic APX1 increased at day 1,
apparently in relation to the higher irradiance after transfer
to ex vitro, for high light is necessary to overcome the
stabilizing effect of ascorbate and to induce significant
cytosolic APX expression (Karpinski et al., 1997). The
enhanced activity of APX1 resulted in a higher proportion
of enzyme activity in the cytosol what is critical for the control
of the signalling role of H2O2, communicating the information
to the nucleus (Shigeoka et al., 2002) and thus regulating
the molecular mechanisms of tolerance against oxidative
stress.
In gel analysis revealed one CAT isoform in
grapevine, with a peak of activity on d2 (ca 150%
increment), a decrease on d4 to values equivalent to d0
and a minimum on d7 (Table 1). In tobacco also one isoform
was detected, with maximum activity on d1 while in tomato
two constitutive isoforms (CAT-A and CAT-B) were detected,
CAT-A decreasing in the second half of the experiment and
CAT-B peaking on d2. In tomato, CAT showed a significant
upregulation on d1, while in tobacco CAT showed the same
pattern as APXs and SODs, with a peak on d2 (25-fold)
and a smaller one on d7 (seven-fold) and in grapevine, it
was steadily upregulated from d1 on (Fig 1).
Redox homeostasis and ROS pools and signalling
are decisive for the acclimation to new light conditions
(Mullineaux et al., 2006). The asc-glut cycle, present in
practically every cellular compartment (Mittler et al., 2004)
performs a crucial role in the control of ROS in each
compartment. CAT, with a low affinity to H2O2 and present
mainly in peroxisomes, is associated with the processing
of H2O2 generated in photorespiration (Vandenabeele et
30
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Table 1. Relative quantification of the in gel activities of APX, SOD, GR and CAT isoenzymes in relation to d0 (d0 = 100%). Total protein extracts of leaves of V.
vinifera, S. lycopersicon and N.benthamiana plants at d0, 1, 2, 4 and 7 d of ex vitro growth were subjected to native PAGE, followed by activity staining for each of
the four enzymes. ªGR activity is only available for V. vinifera; bThese two APX isoforms are not present in V. vinifera at d0, their activity can only be detected from
d1, thus the value 100% on d1 is used for relative comparison
Fig.1. Changes in the expression levels of genes of the
antioxidative system in N. benthamiana (a), V. vinifera (b) and
S. lycopersicon (c). Quantification of mRNA levels of those
genes was performed on d0, 1, 2, 4, and 7 of ex vitro growth.
mRNA was isolated from leaves, converted to cDNA, and
subjected to real-time PCR. Relative amounts were calculated
and normalized with respect to Act2 mRNA. Each time point is
compared to day 0 leaves (n = 3). For clarity purposes, three
different scales were used
Nicotiana benthamiana Solanum lycopersicon Vitis vinifera
0 1 2 4 7 0 1 2 4 7 0 1 2 4 7
GR-B 100a 109 84 63 67
GR-A 100a 138 87 92 77
APX-A 100 97 93 95 98 100 99 98 129 132 100
b
135
APX-B 100 104 103 100 91 100 105 106 123 121 100
b
129
APX-C 100 97 96 100 244 186 62 48
CAT-A 100 254 90 69 107 100 107 101 83 76 100 86 251 103 70
CAT-B 100 104 125 116 114
SOD-A 100 108 115 128 145 100 93 86 83 81 100 132 133 117
SOD-B 100 104 117 133 148 100 88 80 79 80 100 149 157 141
SOD-C 100 93 85
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
31
al., 2004). However, it is also important when excessive
H2O2 is formed, as under oxidative stress (Mittler, 2002). In
tobacco and grapevine, as expected, APX activity increased
at the onset of photooxidative stress, while the strongest
up-regulation of CAT activity and transcript abundance only
occurred latter, resulting in a steady decrease in H2O2
(Carvalho et al., 2006). In tomato, however, APX1 and APX3
abundance remained close to basal levels, indicating that
the enzyme present on d0 could sustain the increase in
activity observed later on.
The three SOD isoforms present in tomato are
MnSODs, the constitutive SOD-A and B were slightly downregulated
during the experiment while SOD-C disappeared
after d2. In tobacco SOD-A corresponds to an ISOD while
SOD-B is a MnSOD (Table 1). In grapevine three different
SOD isoforms were detected, two constitutive MnSODs,
SOD-A and SOD-B, and one induced, SOD-C, a copperzinc
isoform. Transcript abundance of tomato MnSOD and
ISOD was high on d1, unlike Cu-ZnSOD, which increased
only slightly (Fig 1). In tobacco, the three transcript isoforms
presented the characteristic bimodal variation, ISOD
showing the highest abundance. In grapevine only ISOD
and MnSOD showed the bimodal pattern while Cu-ZnSOD
was upregulated from d1.
SOD is crucial to dismutate O2
- into the less
reactive ROS H2O2 and its transcription, expression and
activity is up-regulated in response to photooxidative stress
(Kliebenstein et al., 1998). The results observed in the three
species studied put in evidence the response of SOD to
the changes in the light regime. The high levels of MnSOD
and MnSOD activity can also be related to the high sugar
content in previous heterotrophic growth conditions (Koch,
1996).
In grapevine two isoforms of GR were seen on
gels, both constitutive, GR-A and GR-B (Table 1),
corresponding, respectively to the plastid GOR1 and to the
cytosol GOR2, as evidenced by molecular weight
comparison. In Arabidopsis under excessive light GOR2
expression was maintained constant, increasing slightly at
the recovery period (Karpinski et al., 1997), whereas in
grapevine, GR activity decreased slightly thus appearing
to be suficient to maintain cellular GSH/GSSG.
Tomato DHAR and MDHAR transcripts followed
the pattern of up-regulation on d1, while in tobacco the
abundance of both transcripts was once more bimodal, with
peaks on d2 and d7 as in grapevine where DHAR also
presented a bimodal pattern while MDHAR was
downregulated until d7 (Fig 1).
CONCLUSION
From this study it is possible to conclude that
comprehensive analyses are necessary to draw a reliable
picture of the overall response to stress conditions. Our
results indicate that the two species from the Solanaceae
family display different strategies when responding to light
stress, evidencing further the uniqueness of the response
of each species. Tobacco and grapevine displayed a typical
bimodal pattern, with a peak of expression of key genes of
antioxidative response on d2, correlating well with the
generation of ROS (Carvalho et al., 2006) and a second
peak on d7, indicating a cellular signalling for the
simultaneous formation of new structures, roots and new
leaves. In tomato, the peak of gene expression takes place
earlier, on d1, and the absence of a second peak can be
explained by the early protrusion of roots, not connected in
time with leaf expansion.
REFERENCES
Anderson, M.D., TK Prasad, C.R. Stewart, 1995. Changes
in isozyme profiles of catalase, peroxidase and
glutathione reductase during acclimation to chilling in
mesocotyls of maize seedlings. – Plant Physiol
109:1247-1257.
Asada, K., 1999. The water-water cycle in chloroplasts:
scavenging of active oxygen and dissipation of excess
photons. – Annu Rev Plant Physiol Plant Mol Biol
50:601-639.
Carvalho, L.C., M.L. Osório, M.M. Chaves, S. Amancio,
2001. Chlorophyll fluorescence as an indicator of
photosynthetic functioning of in vitro grapevine and
chestnut plantlets under ex vitro acclimatization. – Plant
Cell Tiss Org Cult 67:271-280.
Carvalho, L.C., BJ Vilela, P. Vidigal, P.M. Mullineaux, S.
Amâncio, 2006. Activation of the ascorbate–glutathione
cycle is an early response of micropropagated Vitis
vinifera L. explants transferred to ex vitro. – Int J Plant
Sci 146: 759-770.
Chang, CC-C, L. Ball, M.J. Fryer, N. Baker, S. Karpinski,
P. Mullineaux, 2004. Induction of ASCORBATE
PEROXIDASE 2 expression in wounded Arabidopsis
leaves does not involve known wound-signalling
pathways but is associated with changes in
photosynthesis. – Plant J 38:499-511.
Demmig-Adams, B., WW Adams III, 1992. Photoprotection
and other responses of plants to high light stress. –
Annu Rev Plant Physiol Plant Mol Biol 43:599-626.
Donahue, J.L., C.M. Okpodu, C.L. Cramer, E.A .Grabau,
R.G. Alscher, 1997. Responses of antioxidants to
paraquat in pea leaves. Relationships to resistance. –
Plant Physiol 113:249-257.
Karpinski, S., C. Escobar, B. Karpinska, G. Creissen, P.M.
Mullineaux, 1997. Photosynthetic electron transport
regulates the expression of cytosolic ascorbate
peroxidase genes in Arabidopsis during excess light
stress. – Plant Cell 9:627-640.
Kliebenstein, D.J., R-A Monde, R.L. Last, 1998. Superoxide
dismutase in Arabidopsis: An eclectic enzyme family
32
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
with disparate regulation and protein localization. – Plant
Physiol 118:637-650.
Koch, K.E., 1996. Carbohydrate-modulated gene
expression in plants. – Annu Rev Plant Physiol Plant
Mol Biol 47:509-540.
Laemmli, U.K., 1970. Cleavage of structural proteins during
the heat of bacteriophage T4. – Nature 227:680-685.
Mittler, R, S Vanderauwera, M Gollery, FV Breusegem,
2004. Reactive oxygen gene network of plants. – Trends
Plant Sci 9:490-498.
Mittler, R., 2002. Oxidative stress, antioxidants and stress
tolerance. Trends Plant Sci 7:405-410.
Mullineaux P., Karpinski S., Baker N. (2006) Spatial
dependence for hydrogen peroxide-directed signaling
in light stressed plants. – Plant Physiol 141:346-350.
DOI:10.1104/pp.106.078162.
Noctor, G., L. Gomez, H. Vanacker, C.H. Foyer, 2002.
Interactions between biosynthesis, compartmentation
and transport in the control of glutathione homeostasis
and signalling. J Exp Bot 53:1283-1304.
Ort, D.R., N.R. Baker. 2002. A photoprotective role for O2
as an alternative electron sink in photosynthesis? – Curr
Opin Plant Biol 5:193-198.
Panchuk, II., R.A. Volkov, F. Schoffl, 2002. Heat stressand
heat shock transcription factor-dependent
expression and activity of ascorbate peroxidase in
Arabidopsis. – Plant Physiol 129:838-853.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Ìàëãîæàòà Áåðîâà
E-mail: maberova@abv.bg
Rao, M.V., G. Paliyath, D.P. Ormrod, 1996. Ultraviolet-Band
ozone-induced biochemical changes in antioxidant
enzymes of Arabidopsis thaliana. – Plant Physiol
110:125-136.
Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T.
Takeda, Y. Yabuta, K .Yoshimura, 2002. Regulation and
function of ascorbate peroxidase isoenzymes. – J Exp
Bot 53:1305-1319.
Van Huylenbroeck, J.M., A. Piqueras, P.C. Deberg, 2000.
The evolution of photosynthetic capacity and the
antioxidant enzymatic system during acclimatization of
micropropagated Calathea plants. – Plant Sci 135:59-
66.
Vandenabeele, S., S. Vanderauwera, M. Vuylsteke, S.
Rombauta, C. Langebartels, H.K. Seidlitz, M .Zabeau,
M.V. Montagu, D. Inzé, F.V. Breusegem, 2004. Catalase
deficiency drastically affects gene expression induced
by high light in Arabidopsis thaliana. – Plant J 39:45-
58.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
33
ÔÈÇÈÎËÎÃÈ×ÍÀ ÐÅÀÊÖÈß ÍÀ SALIX VIMINALIS  ÓÑËÎÂÈßTA ÍÀ ÀÍÒÐÎÏÎÃÅÍÅÍ ÑÒÐÅÑ
PHYSIOLOGICAL REACTION OF SALIX VIMINALIS TO STRESS OF ANTHROPOGENIC ORIGIN
1ßöåê Âðóáåë, 1Ìàëãîæàòà Ìèêè÷óê*, 1Êàòàæèíà Ìàëèíîâñêà, 2Àðëåòà Äðîçä
1Jacek Wrobel, 1Malgorzata Mikiciuk*, 1Katarzyna Malinowska, 2Arleta Drozd
1Êàòåäðà „Ôèçèîëîãèÿ íà ðàñòåíèÿòà”, Çàïàäíîïîìåðàíñêè òåõíîëîãè÷åí óíèâåðñèòåò
Ø÷å÷èí, Ïîëøà
2Êàòåäðà „Ñåëåêöèÿ íà çåëåí÷óêîâè êóëòóðè”, Çàïàäíîïîìåðàíñêè òåõíîëîãè÷åí óíèâåðñèòåò
Ø÷å÷èí, Ïîëøà
1Department of Plant Physiology, West Pomeranian University of Technology in Szczecin, Poland
2Department of Horticultural Plant Breeding, West Pomeranian University of Technology in Szczecin, Poland
*E-mail: malgorzata.mikiciuk@zut.edu.pl
Ðåçþìå
Öåëòà íà ïðîó÷âàíåòî áåøå äà ñå ñðàâíÿò ðàñòåæúò è íÿêîè ôèçèîëîãè÷íè ïàðàìåòðè íà Salix viminalis
(êëîí Bjor) ïðè îòãëåæäàíå âúðõó àíòðîïîãåííî ïðîìåíåíè ïî÷âåíè ëåãëà. ×óâñòâèòåëíîñòòà íà Salix viminalis êúì
äåãðàäàöèÿòà íà ïî÷âåíèòå ëåãëà áåøå îöåíåíà íà áàçàòà íà ðàñòåæíè (ðàñòåæ íà ñòúáëàòà è òåõíèÿ äèàìåòúð è
ñòðóêòóðà íà äîáèâà) è ôèçèîëîãè÷íè (èíòåíçèâíîñò íà CO2 àñèìèëàöèÿ è òðàíñïèðàöèÿ, âîäíî ñúäúðæàíèå,
ñúäúðæàíèå íà õëîðîôèë, ñúäúðæàíèå íà ïðîëèí) ïîêàçàòåëè.  ðåçóëòàò íà èçñëåäâàíåòî áåøå óñòàíîâåíî, ÷å
ïî÷âåíèòå ëåãëà íàìàëÿâàò ñúùåñòâåíî ðàñòåæà, ïðîäóêòèâíîñòòà è ôèçèîëîãè÷åñêèÿ ñòàòóñ íà êëîí Bjor.
Çàñîëÿâàíåòî áåøå ôàêòîðúò ñ íàé-ñèëåí ðåäóöèðàù åôåêò âúðõó èçìåðâàíèòå ïîêàçàòåëè. Âúðáàòà îò âèäà Salix
viminalis áåøå íàé-÷óâñòâèòåëíà êúì êèñåëèííîñòòà íà ïî÷âåíîòî ëåãëî.
Çàñîëÿâàíåòî èíäóöèðà íàòðóïâàíå íà íàé-âèñîêàòà êîíöåíòðàöèÿ íà ïðîëèí â ëèñòàòà (îñìîïðîòåêòîð,
àíãàæèðàí â çàùèòàòà íà ðàñòåíèÿòà îò ñòðåñîâè ôàêòîðè).
Abstract
The aim of the study was to compare the growth and some physiological parameters of Salix viminalis of Bjor
clone growing on anthropologically changed soil beds. Sensitivity of Salix viminalis to soil bed degradation was evaluated
based on measurement of its biometric (intensity of shoots growth and their diameter, yield structure), physiological
(assimilation and transpiration intensity, water content in shoots and a+b chlorophyll concentration and proline content)
features. As a result of the studies, a significant influence of the examined, degraded soil beds was reported on a decrease
in growth, productivity and physiological status of the basket willow of Bjorn clone. Salinity was the factor most reducing the
above mentioned features. Among the examined stress factors, the basket willow was the most sensitive to soil bed acidity.
Salinity was the reason for the highest proline concentration in the leaves – an osmoprotectant engaged in protecting
the plant from the stress results.
Êëþ÷îâè äóìè: Salix vimnalis, óâðåäåíè ïî÷âè, àñèìèëàöèÿ, òðàíñïèðàöèÿ, ïðîëèí.
Key words: Salix vimnalis, degraded soil bed, assimilation, transpiration, proline.
INTRODUCTION
Biodegradation of the natural environment is,
above all, connected with human activity. The area of
anthropogenically altered land is still increasing. Within
the territory of Poland there are over 70 thousand hectares
of land which requires recultivation, including over 64
thousand hectares of devastated land and ca. 6 thousand
hectares of degraded land (the Central Statistical Office,
2004). Salix (Dubas, 2008) may be used for biological
recultivation especially in its bush forms Salix americana,
Salix amygdalina and its hybrid form Salix viminalis
(Szczukowski et al., 2002). These forms are characterised
by wide range of ecological tolerance. They can grow in
conditions of high abiotic stress intensity, in which many
other plants would not have any chance of survival. They
34
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
are able to adapt morphologically, biochemically and
physiologically to changing environmental conditions.
The aim of the study was to compare the growth
and physical activity intensity of Salix viminalis of Bjor clone
growing on anthropologically changed soil beds.
MATERIAL AND METHODS
The biological material consisted of the basket
willow Bjor clone seedlings produced in Sweden and
propagated on the Hvidsted Energy Forest nursery
plantation in Denmark.
In the years 2002-2008, 2 series of vase
experiments were conducted, each repeated three times
with four degraded soil beds and a control soil bed. The
vases (of 20 kg capacity) were filled with the following soil
bed layers (0-45 cm): former arable soil – valuation class 6
(light loamy sand) with low pH of 4.0; sand silt from
Szczecin-OEwinoujoecie water lane dredging (sand) with low
water capacity and nutrients content; oiled soil (silt loam)
contaminated with petroleum derivative compounds, taken
from former Soviet airport near Szczecin; saline soil taken
from a road side of strong salinity (ca. 16g NaCl per dm -3)
and control soil bed – valuation class 4 (loamy fen soil).
The following measurements were made during vegetation
of the willow growing on the above mentioned soil beds:
height and diameter of the willow shoots, growth kinetics
of the shoots with the use of the exponential logistic function
according to Richard, dry mass yield and water content in
shoots determined with the gravimetric method, net
assimilation and transpiration intensity with the use of LCA-
4 gas analyser (ADC Bioscentific Ltd. Hoddeson, UK)
working in an open system with PLC-4 type chamber with
lighting of about 1000 μmol·m-2 ·s-1. Also, the effectiveness
of water use during assimilation was calculated. a+b
chlorophyll content was determined with Lichtenthaler and
Welburn method (1983), while free proline content – with
Bates method (1973).
The significance of differences for the interactions
was determined based on the variance analysis with
significance level α =0.05.
RESULTS AND DISCUSSION
The results of the examined parameters are
presented in table 1 and figures 1-2. The willow shoots in
the control soil reached the greatest final height of ca. 2.6
m and diameter of ca. 10 mm. Whereas, the growth
dynamics on degraded soils was much lower. The lowest
shoots were recorded on saline soil, slightly higher ones
on the sand silt and oiled soil (ca. 150 cm), while their
diameter did not usually exceed 6-8 mm. A slight decrease
in shoot height and diameter was recorded for the soil bed
with low pH.
The maximum daily height gain appeared to be
the parameter which differentiated the shoot elongation
growth most (fig. 1). In the control conditions, it was
definitely the highest with the value of ca. 3 cm. This
occurred on the 70th vegetation day. Whereas, maximum
height gains on degraded soils occurred several days earlier
with the values from 1 cm on saline soil to 1.8 cm on acid
soil. On most soil beds the willow shoot elongation growth
had a characteristic sigmoid shape – fig. 1. The duration of
fast growth phase was most significantly reduced by soil
bed salinity. This was reflected in a flattened shape of the
growth curves. On the other hand, Gregorczyk et al. (2004)
in their studies used a polynomial of the second degree to
describe the growth kinetics of three basket willow clones
growing in saline soil stress conditions. The growth curves
were parabolic and not sigmoid.
The unit yield was differentiated by the type of soil
bed. The biomass growth was most reduced by the sodium
chloride and petroleum derivative compounds. The quantity
of accumulated dry mass was twice lower than in the control.
Relatively high shoot yield was obtained by willows on the
acid soil – ca. 83% of the control. According to many
authors, it is not acidity but alkaline soil reaction (pH above
8.0) that significantly reduces the growth and yielding of
the basket willow.
The share of the individual organs in the yield
varied depending on the type of soil bed. The roots share
was dominant on the sand silt and the oiled soil (47-48%),
while the shoots share was relatively small – almost 40%.
Large shoots share was recorded in the optimal and ca.
70% salinity conditions – fig. 2.
The results concerning the shoot water content in
various soil beds indicate that shoot hydration was the
highest on saline soils (over 60%), while on other soil beds
it was from 46 to 51%. Greszta and Gruszka (2002)
demonstrated a significant influence of NaCl on higher wood
hydration of urban plants. Retaining the highest possible
photosynthetic activity of leaves is a decisive factor
especially for the yielding of cultivable plants grown in less
favourable habitat conditions.
Assimilation is a complex process subject to strong
internal and environmental regulations. Soil bed salinity
again appeared to be the factor most reducing the
assimilation and transpiration intensity caused by limited
access to water in the soil resulting from reduced chemical
potential of water. Furthermore, increased resistance of
diffusive stomata is worth noticing in soil bed salinity
conditions, which is caused by extensive accumulation of
Na and Cl ions in leaves (Johnson et al., 2002; Sperry et
al., 2002). Petroleum derivative compounds also strongly
reduced both assimilation and transpiration. On the other
hand, soil bed acidity did not significantly influence the
reduction of gas exchange in willow leaves.
Photosynthetic effectiveness of water usage is an
important parameter decisive for plant productivity,
especially in stress conditions. In the conditions of strong
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
35
Òàáëèöà 1. Áèîìåòðè÷íè, ôèçèîëîãè÷íè è áèîõèìè÷íè õàðàêòåðèñòèêè íà Salix viminalis êëîíèíã Bjor â ðàçëè÷íè ïî÷âåíè ñóáñòðàòè
Table 1. Biometrical, physiological and biochemical features of Salix viminalis clone Bjor in different soil substratum
Type
soil substratum
Analysed parameters
Height
[cm]
Diameter
[mm]
Dray mater
shoots
[g per plant]
Water
content
in shoots
[%]
Assimilation
[µmolCO2·m-2·s-1]
Transpiration
[mmolCO2·m-2·s-1]
Effectiveness
of water use
in
assimilation
[mmol⋅mol-1]
Chlorophyll
a+b
[mg·g-1 f.m.]
Proline content
[mg·g-1 d.m.]
Control soil
bed
260a 10a 322a 48b 12.3a 3,82a 3.23b 3.26a 0.18e
Postcultivation
soil
210b 9a 256b 58ab 8.8b 3,61a 2.46c 2.81b 0.34d
Sandy silt 150c 6bc 185c 50b 4.45c 1.88b 2.13cd 2.08c 1.28b
Saline soil
120cd
5c 129d 62a 3.4d 0.89c 3.86a 1.98c 1.84a
Oiled soil 147c 7b 141d 51b 2.9d 0.77c 3.82a 0.98d 0.84c
20 40 60 80 100 120 140 160 180
the day of vegetation
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
height [cm]
saline soil
oiled soil
sandy silt
post-cultivation soil
control medium
Ôèã. 1. Êðèâè íà ëèíååí ðàñòåæ íà ëåòîðàñëèòå ïðè
ñóáñòðàòè îò óâðåäåíè ïî÷âè
Fig. 1. Curves of shoots elongation growth on degraded soil
substratum
0%
20%
40%
60%
80%
100%
Postcultivation
soil
Sandy silt Saline soil Oiled soil Control
leaves
shoots
roots
Ôèã. 2. Ó÷àñòèå íà îðãàíèòå íà Salix viminalis ‘Bjor‘ [%] â îáùèÿ äîáèâ ïðè
ñóáñòðàòè îò óâðåäåíè ïî÷âè
Fig. 2. Participation of particular Salix viminalis ‘Bjor‘ organs [%] in total yield on
degraded soil substratum
a,b. – averages followed by the same letter do not differ significantly at p = 0.05 (Tukey range test)
36
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
stress influence (salinity and oiling), the value of this index
was much higher than in the conditions of strong soil acidity
or on the permeable soil bed (sand silt).
Among the cell organelles, chloroplasts are the
most sensitive to stress factors caused by high water deficit.
Hence, a sudden decrease in a+b chlorophyll content in
willow leaves was observed in oiled soil conditions (3-fold
compared to the control) and in the case of soil salinity as
well as on the sand silt.
A significant increase in proline concentration, an
osmoprotectant engaged in protecting plants from stress
results, was observed especially in strong soil salinity
conditions. High proline level in Bjor clone with medium
soil bed salinity was also demonstrated by Stolarska et al.
(2008). The salinity and soil drought stress are accompanied
by strong oxidation stress increasing fast synthesis of free
proline in cells (Stolarska et al., 2008). In the conditions of
soil bed acidity, the level of proline content was close to the
control.
CONCLUSIONS
1. All the examined anthropologically changed soil beds
influences the decrease in productivity and physiological
activity of the basket willow of Bjor clone.
2. The growth and yielding of the willow were most
significantly reduced by the sodium chloride and the
petroleum derivative compounds in the soil beds, which
decreased the examined physiological parameters.
3. Among the examined stress factors, the basket willow
was the most sensitive to soil bed acidity.
4. Salinity was the reason for the highest concentration of
proline in leaves - an osmoprotectant engaged in protecting
plants from hydrous stress results.
REFERENCES
Bates, L., Waldren R., Teare J., 1973. Rapid determination
of free proline for water stress studies. – Plant Soil 39,
205-207.
Dubas, J. W., Grzybek A., Kotowski W., Tomczyk. A., 2004.
Wierzba energetyczna-uprawa i technologie
przetwarzania. WSEiA., Bytom, 138.
Gregorczyk, A., Wrobel J. Mikiciuk M., 2005. Kinetyka
wzrostu trzech form hodowlanych wierzby wiciowej w
zale¿nooeci od zró¿nicowanych dawek chlorku sodu w
glebie. – Acta Sci. Pol., Ser. Agricultura 4(1), 33-40.
GUS, 2004. Ochrona Srodowiska. Informacje i opracowania
statystyczne, Warszawa, 108.
Greszta, J., Gruszka A., 2000. Wplyw soli i chlorowodoru
na lasy oraz zielen miejska. – Sylwan 3, 33-40.
Johnson, J. D., Tognetti., R., Paris P., 2002. Water relations
and gas exchange in poplar and willow under water
stress and elevated atmospheric CO2. – Physiologia
Plantarum 115, 93-100.
Lichtenthaler, H. K., Wellburn A. R., 1983. Determinations
of total carotenoids and chlorophyll a and b of leaf
extracts in different solvents. – Biochem. Soc. Trans.
11, 591-592.
Sperry, J. C., Hacke U. G., Oren R., Comstock J. P., 2002.
Water deficits and hydraulic limits to leaf water supply.
– Plant Cell Environ. 25, 251-263.
Stolarska, A., Wrobel J. Przybulewska K., 2008. Free proline
content in leaves of Salix viminalis as an indicator of
their resistance against substrate salinity. – Ecological
Chemistry and Engineering. Vol. 15, ¹ 1-2: 139-146.
Szczukowski, S., Tworkowski J., Klasa A., Stolarski M. J.,
2002. Productivity and chemical composition of wood
issues of short rotation willow copice cultivated on arable
land. – Rostl. Vyr. 48 (9), 413-417.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Ìàëãîæàòà Áåðîâà
E-mail: maberova@abv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
37
ÔÈÇÈÎËÎÃÈ×ÅÍ ÎÒÃÎÂÎÐ ÍÀ ÃËÀÂÅÑÒÀÒÀ ÑÀËÀÒÀ (LACTUCA SATIVA VAR. CAPITATA) ÊÚÌ ÇÀÑÎËßÂÀÍÅ
A PHYSIOLOGICAL RESPONSE OF THE HEAD LETTUCE (LACTUCA SATIVA VAR. CAPITATA) ON THE SALINITY
Ìàëãîæàòà Ìèêè÷óê*, Êàòàæèíà Ìàëèíîâñêà, ßöåê Âðóáåë, Óðøóëà ×èæåâñêà
Malgorzata Mikiciuk*, Katarzyna Malinowska, Jacek Wrobel, Urszula Czyzewska
Êàòåäðà „Ôèçèîëîãèÿ íà ðàñòåíèÿòà”, Çàïàäíîïîìåðàíñêè òåõíîëîãè÷åí óíèâåðñèòåò
Ø÷å÷èí, Ïîëøà
Department of Plant Physiology, West Pomeranian University of Technology
Szczecin, Poland
*E-mail: malgorzata.mikiciuk@zut.edu.pl
Ðåçþìå
Åêñïåðèìåíòèòå áÿõà èçâåäåíè ïðåç ïåðèîäà 2008-2009 ã. ñ ãëàâåñòà ñàëàòà ñîðò “Nochowska”. Ðàñòåíèÿòà
áÿõà îòãëåæäàíè êàòî âîäíè êóëòóðè. Íàòðèåâèÿò õëîðèä áåøå ïðèëîæåí â ñëåäíèòå êîíöåíòðàöèè: 0, 68, 136 mÌ
NaCl (ïúðâè åêñïåðèìåíòàëåí ôàêòîð). Â åêñïåðèìåíòèòå áÿõà ïðèëîæåíè äâå íèâà íà õðàíåíå ñ êàëèé: êîíòðîëà
(áåç äîïúëíèòåëíî ïîäàâàíå íà Ê), +20% Ê (âòîðè åêñïåðèìåíòàëåí ôàêòîð). Êîíòðîëíèòå ðàñòåíèÿ áÿõà îòãëåæäàíè
âúðõó õðàíèòåëåí ðàçòâîð íà Hoagland (ðÍ=5,5). Çíà÷èòåëíî íàìàëÿâàíå íà CO2 àñèìèëàöèÿòà áåøå óñòàíîâåíî
ïðè ðàñòåíèÿòà, îòãëåæäàíè ïðè 136 mÌ NaCl, áåç äîïúëíèòåëíî õðàíåíå ñ êàëèé. Ïîâèøåíîòî çàñîëÿâàíå è
äîïúëíèòåëíîòî ïîäõðàíâàíå ñ 20% Ê íå ïîíèæàâàò èíòåíçèâíîñòòà íà ôîòîñèíòåçàòà ïðè õèäðîïîííî îòãëåæäàíè
ðàñòåíèÿ. Íàìàëÿâàíå íà èíòåíçèâíîñòòà íà òðàíñïèðàöèÿòà è íàðàñòâàíå íà èíäåêñà íà åôåêòèâíîñòòà íà
èçïîëçâàíå íà âîäàòà âúâ ôîòîñèíòåçàòà áÿõà óñòàíîâåíè ïðè íàðàñòâàùè êîíöåíòðàöèè íà NaCl â ðàñòåíèÿòà,
äîïúëíèòåëíî ïîäõðàíâàíè ñ Ê. Äîïúëíèòåëíîòî ïîäàâàíå íà 20% Ê, íåçàâèñèìî îò ñòåïåíòà íà çàñîëÿâàíå ñ NaCl,
âîäè äî ïîâèøåíî ñúäúðæàíèå íà âñè÷êè ôîðìè õëîðîôèë â ëèñòàòà íà èçñëåäâàíèòå ðàñòåíèÿ.
Abstract
The experiment was carried out during 2008-2009, using the method of water cultures. The biological material
was head lettuce var. ‘Nochowska’. The first experimental factor was concentration of sodium chloride in the medium: the
control, 68 and 136 mÌ NaCl, whereas the second factor was the level of fertilization with potassium: + 20%K, the control
(without additional fertilization with potassium). The control was a full Hoagland’s medium (pH 5.5). A significant decrease
in the intensity of CO2 was observed in plants grown in the medium of 136 mÌ NaCl concentration, with no additional
nutrition with potassium. An increase in salinity, in the hydroponic growing media enriched with 20% of potassium, did not
cause a decrease in photosynthesis. A decrease in the intensity of transpiration and an increase in the index of water use
effectiveness in photosynthesis were recorded along with an increase in the NaCl concentration in plants additionally
nourished with potassium.The addition of 20% of potassium caused, independently of the level of salinity of the media, an
increase in the content of all the forms of chlorophyll in the leaves of the studied plant.
Êëþ÷îâè äóìè: Lactuca sativa var. capitata, íàòðèåâ õëîðèä, ëèñòåí ãàçîîáìåí, ïèãìåíòè.
Key words: Lactuca sativa var. capitata, sodium chloride, gas exchange, pigments.
INTRODUCTION
A too high concentration of salt in the environment
is one of more important problems of agriculture, limiting
cultivation of plants (Yeo, 1999; Sudhaker et al., 2001; Zhu,
2001). The problem of salinity arises when the concentration
of salt in soil exceeds the value of 10 mol’”m-3 (Kalaji and
Rutkowska, 2004). The influence of salinity on plants can
be different depending on the plant species, the kind and
concentration of salt, the duration of stress, the state of
environment and the impingement of other factors (Kalaji
and Pietkiewicz, 1993; Matuszak and Brzóstowicz, 2004).
Leaf vegetables, including head lettuce, are sensitive even
to relatively small salinity. Under the conditions of an
increased concentration of salt in the environment, in the
beginning, symptoms of water stress appear in a plant, then
symptoms of osmotic stress and finally toxicity of ions of
38
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
salt. This leads to the reduction of quantity and quality of
crops. In recent years numerous research works on
possibilities of soothing the effects of water stress have
been carried out. There are publications on the use, for
this purpose, of plant nutrition with some macroelements
(Bilski, 1990; Elkhatib et al., 2004) and microelements
(Hawrylak, 2007).
The aim of the experiment was to determine the
effect of an increased concentration of NaCl in the medium
on physiological features of head butter lettuce and to
answer the question whether the presence of potassium in
the nutritive environment of the plant can modify the reaction
of this species to salt stress.
MATERIAL AND METHODS
In years 2008-2009 in the laboratory of the
Department of Plants Physiology of West Pomeranian
University of Technology in Szczecin, a vegetative experiment
was carried out using the method of water cultures. A twofactor
system of complete randomization in five replications
was used. The first experimental factor was concentration of
sodium chloride in the medium: the control, 68 and 136 mÌ
NaCl, whereas the second factor was the level of fertilization
with potassium: + 20%K, the control (without additional
fertilization with potassium). The control was a full Hoagland’s
medium (pH 5.5). The experiment was carried out in two
series (repetitions in time) in June and July.
The biological material of the research was head
lettuce var. ‘Nochowska’. The lettuce seedlings were
produced in our greenhouse from seeds. About 16 days
after the time of sowing, when the plants reached the height
of about 10cm, they were carried to water cultures (glass
flasks of 70 dm3 capacity, filled with a full Hoagland’s
medium), where they grew for three successive days. Then
the composition of the media was diversified in respect of
NaCl and potassium concentration. The volume of the
medium was systematically completed and it was aerated.
7 days after placing the plants in hydroponics, the
content of photosyntetic pigments (chlorophyll a, b and total)
in leaves were determined in three replications. In order to
determine the content of photosyntetic pigments the method
of Lichtenthaler and Wellburn (1983) was used. The amount
of chlorophyll and carotenoids was calculated according to
Arnon et al. (1956).
The measurements of gas exchange in leaves of
lettuce, e.i. the net intensity of the photosynthesis process
(A), transpiration (E), were made 7 days after the salinity,
in 8 replications. The measurements were carried out with
the use of a TPS-2 gas analyzer with a PLC-4 chamber,
manufactured by PP Systems (UK). On the basis of the
obtained results of the intensity of assimilation and
transpiration, the index of effectiveness of water use in the
process of photosynthesis (ω
F), estimated by the ratio A:E,
was calculated.
The obtained results were worked out using the twofactor
analysis of variance. The significance of differences
between averages were determined by means of the Duncan
test at the level of significance of á = 0.05. Due to homogeneity
of the variance of error the synthesis of results of two series of
experiments from both years were carried out.
RESULTS AND DISCUSSION
The salt and osmotic stress, caused by a too high
concentration of salt in the growth environment of a plant,
manifests itself by a decrease in the intensity of
photosynthesis in rice (Sultana et al., 1999), barley (Cho et
al., 1998) and maize (Sage, 2004). In the carried out studies
it was observed that addition of NaCl to the medium at the
concentration of 68 mmol.dm-3 did not cause any changes
in the intensity of assimilation in lettuce. Such a relationship
was observed both when the hydroponic growing medium
was enriched with 20% of potassium and while there was
no additional nutrition with this element.Whereas the applied
higher concentration of NaCl (136 mÌ) resulted in a
significant decrease in the intensity of photosynthesis in
plants growing with no additional nutrition with potassium
(Table1). A similar reaction to the addition of salt at the
concentration of 180 mÌ NaCl was observed, in maize
seedlings, by Kalaji and Rutkowska (2004). In the case of
lettuce growing in the hydroponic media enriched with 20%
of potassium, the increase in the concentration of NaCl did
not cause a decrease in the intensity of assimilation. This
can prove the fact that potassium increases tolerance of
the studied species to the salt stress.
Lettuce growing under the conditions of a
differentiated concentration of NaCl, without addition of
potassium, was characterized by transpiration at the level
approximate to transpiration of the control plants (Table 1).
Whereas in plants additionally provided with potassium, a
decrease in the intensity of transpiration along with an
increase in the concentration of salt in the hydroponic media
was observed. In the studies carried out by Leidi (1991)
and Kalaji and Rutkowska (2004) it was stated that a low
concentration of NaCl (25-136 mÌ NaCl) did not cause,
among other things, any changes in transpiration. According
to Toker et. al. (1999), under the conditions of stress, a
limitation of transpiration appears.
In lettuce growing under the conditions of the
largest salinity, without addition of potassium, a slightly lower
index of water use effectiveness (ω
F) than in the control
plants and the plants growing in the medium of a 68 mÌ
concentration was observed. In the case of plants
additionally nourished with potassium, addition of
differentiated doses of NaCl resulted in an increase in the
ω
F index as compared to the control plants (Table 1).
The drop in the level of assimilation dyes was
classified as the cause of a decrease in photosynthesis
under the conditions of salinity by Kolchevskii et al. (1995)
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
39
Òàáëèöà 1. Èíòåíçèâíîñò íà ÑÎ2 àñèìèëàöèÿòà è òðàíñïèðàöèÿòà â ëèñòàòà íà Lactuca sativa var. capitata
Table 1. The intensity of assimilation of CO2 and transpiration in the leaves of Lactuca sativa var. capitata
Dose of NaCl
[mМ]
Dose of K
Mean Full Hoagland’s
medium
Full Hoagland’s
medium + 20%K
Assimilation of CO2 [µmol·m
-2
·s
-1
]
Control 2.05a 2.15a 2.10b
68 2.12a 2.58a 2.35b
136 1.21b 2.60a 1.90a
Mean 1.79a 2.44b
Transpiration [mmol·m
-2
·s
-1
]
Control 0.37a 0.51b 0.44a
68 0.38a 0.38ab 0.38a
136 0.34a 0.30a 0.36a
Mean 0.36a 0.39a
Index of water use in the photosynthesis (ωF) [mmol·mol
-1
]
Control 5.54b 4.21a 4.77a
68 5.58b 6.79b 6.18a
136 3.56a 8.67b 5.28a
Mean 4.97a 6.26a
* Averages denoted with the same letters do not differ significantly at the level of significance α = 0.05
Òàáëèöà 2. Ñúäúðæàíèå íà õëîðîôèë a, b, a+b è êàðîòèíîèäè â ëèñòàòà íà Lactuca sativa var. capitata [mg.g-1 FW]
Table 2. Content of chlorophyll a, b, a+b and carotenoids in leaves of Lactuca sativa var. capitata [mg.g-1 FW]
Dose of NaCl
[mМ]
Dose of K
Mean Full Hoagland’s
medium
Full Hoagland’s
medium + 20%K
Chlorophyll a
Control 0.586a 0.597a 0.591a
68 0.582a 0.618ab 0.600ab
136 0.634ab 0.698b 0.666b
Mean 0.600a 0.638a
Chlorophyll b
Control 0.228a 0.229a 0.228a
68 0.246a 0.238a 0.242a
136 0. 224a 0.268a 0.246a
Mean 0.233a 0. 245a
Chlorophyll a+b
Control 0.814a 0.826a 0.820a
68 0.828a 0.856a 0.842ab
136 0.878a 0.966a 0.922b
Mean 0.840a 0.883a
Carotenoids
Control 0.309a 0.400a 0.354a
68 0,318a 0.339a 0.328a
136 0.343a 0.367a 0.346a
Mean 0.323a 0.369a
* Averages denoted with the same letters do not differ significantly at the level of significance α = 0.05
40
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
and Sultana et al. (1999). In the carried out studies it was
observed that the content of chlorophyll a, b and total in
leaves of lettuce was growing along with the increase in
the concentration of NaCl in the hydroponic growing media.
This relationship was the most distinct in the case of
chlorophyll a+b. The statistical analysis showed significant
differences between the content of these dyes in leaves of
the control plants and the plants growing in the cultures of
the concentration of 136 mÌ NaCl (Table 2).
The additional nutrition of plants with potassium
caused,independently of the salinity level of the media, an
increase in the content of all the forms of chlorophyll in the
leaves of lettuce. The largest growth was recorded in the
case of the content of chlorophyll a in leaves of the plants
growing in hydroponic media of the concentration of 68 mÌ
NaCl and in the case of total chlorophyll in leaves of the
plants from the cultures of the largest salinity. In the research
conducted by Kalaji and Rutkowska (2004) no distinct
changes in the absolute content of chlorophyll were noticed
in seedlings of maize treated with NaCl of the concentration
of 60 mÌ NaCl as compared to the control. Whereas, NaCl
at the concentrations of 120 and 180 mÌ caused a
significant decrease in chlorophyll in leaves.
The content of carotenoids in leaves of lettuce
growing under differentiated conditions of salinity was
approximate. No significant effect of additional nourishment
of plants with potassium on the content of these dyes was
observed.
CONCLUSIONS
1. The addition of NaCl at the concentration of 68 mÌ did
not cause any changes in the intensity of photosynthesis
in lettuce.
2. A significant decrease in the intensity of CO2 was
observed in plants growing in the medium of the
concentration of 136 mmol.dm-3, with no additional
nutrition with potassium.
3. An increase in salinity, in the hydroponic growing media
enriched with 20% of potassium, did not cause a
decrease in photosynthesis.
4. A decrease in the intensity of transpiration and an
increase in the index of water use effectiveness in
photosynthesis were recorded along with an increase
in the concentration of NaCl in plants additionally
nourished with potassium.
5. The addition of 20% of potassium caused, independently
of the level of salinity of the media, an increase in the
content of all the forms of chlorophyll in leaves of the
studied plant.
REFERENCES
Arnon, D.J., Allen M.B., Whatley F., 1956. Photosynthesis
by isolated chloroplast. IV General concept and
comparison of three photochemical reactions. –
Biochim. Biophys. Acta, 20, 449-461.
Cho, J.W., Kim-Choong S., Kim C.S., 1998. Effect of
NaCl concentration on photosynthesis and mineral
content of barley seedlings under solution culture. –
Korean J. Crop Sci. 43: 152-156.
Elkhabit, H.A., Elkhabit E.A., Allah A.M.K., El-Sharkawy
A.M., 2004. Yield response of salt stressed potato to
potassium fertilization: a preliminary mathematical
model. – J. Plant Nutr., 27: 111-122.
Hawrylak, B., 2007. Fizjologiczna reakcja ogórka na stres
zasolenia w obecnooeci selenu. Rocz. Akademii Rolniczej
w Poznaniu, CCCLXXXIII, 483-486.
Kalaji, M.H., Pietkiewicz S., 1993. Sainity effects on plant
growth and other physiological processes. – Acta
Physiol. Plant., 15(2), 82-124.
Kalaji, M.H., Rutkowska A., 2004. Reakcje aparatu
fotosyntetycznego siewek kukurydzy na stres solny. –
Zesz. Probl. Post. Nauk Rol., 496:545-558.
Kolchevskii, K.G., Kocharyan N.I., Korpleva O.Y., 1995.
Effect of salinity on photosynthetic characteristics and
ion accumulation in C3 and C4 plants of Araran plain. –
Photosynthetica, 31: 277-282.
Leidi, E.O., Silberbush M., Lips S.H., 1991. Wheat growth
as affected by nitrogen type, pH and salinity. II
Photosynthesis and transpiration. – J. Plant. Nutr. 14:
247-256.
Lichtenthaler, H.K., Wellburn A.R., 1983. Determinations of
total carotenoids and chlorophyll a and b of leaf extracts
in different solvents. – Biochem.Soc. Trans, 11, 591-592.
Matuszak, R., Brzóstowicz A., 2004. Wp³yw NaCl na wzrost
siewek ¿yta odmiany Wibro. – Zesz. Probl. Post. Nauk
Rol., 496, 565-572.
Sage, R.F., 2004. The evolution of C4 photosynthesis. –
New Photologist 161: 341-370.
Sudhaker, CH., Lakshmi A., Giridarakumar S., 2001.
Changes in the antioxidant enzyme efficacy in two high
yielding genotypes of mulberry (Morus alba L) under
NaCl salinity. – Plant Sci., 161: 613-619.
Sultana, N., Ikeda T., Itoh R., 1999. Effect of NaCl salinity
on photosynyhesis and dry matter accumulation in
developing rice grains – Environ. Exp. Bot., 43:211-220.
Toker, C., Gorham J., Cagirgan M., 1999. Assesment of
response to drought and salinitystresses of barley
(Hordeum vulgare L) mutants. – Cereal Res. Comm.
27:411-418.
Zhu, Jian-Kang, 2001. Plant salt tolerance. – Trends in Plant
Science, 6(2), 66-71.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Ìàëãîæàòà Áåðîâà
E-mail: maberova@abv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
41
ÅÔÅÊÒ ÍÀ ÇÀÑÎËßÂÀÍÅÒÎ ÂÚÐÕÓ ÀÊÒÈÂÍÎÑÒÒÀ ÍÀ ÀÍÒÈÎÊÈÑËÈÒÅËÍÈ ÅÍÇÈÌÈ Â ËÈÑÒÀ È ÊÎÐÅÍÈ
ÎÒ ÔÀÑÓË (PHASEOLUS VULGARIS L.)
SALINITY EFFECT ON ANTIOXIDANT ENZYMES IN LEAVES AND ROOTS OF BEANS (PHASEOLUS VULGARIS L.)
Ìèðîñëàâà Êàéìàêàíîâà*, Ëþäìèëà Ëþáåíîâà1, Ïåòåð Øðüîäåð1, Íåâåíà Ñòîåâà, Äîáðèíêà Áàëàáàíîâà
Miroslava Kaymakanova*, Lyudmila Lyubenova1, Peter Schroder1, Nevena Stoeva, Dobrinka Balabanova
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ
1Ãåðìàíñêè èçñëåäîâàòåëñêè èíñòèòóò çà åêîëîãè÷íî çäðàâå, Íþðíáåðã, Ãåðìàíèÿ
Agricultural University - Plovdiv
1Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
*E-mail: mira_4u@abv.bg
Ðåçþìå
Ïðîó÷åí áåøå åôåêòúò íà ñîëåâèÿ ñòðåñ âúðõó àêòèâíîñòòà íà íÿêîè àíòèîêèñëèòåëíè åíçèìè â ëèñòà è
êîðåíè îò ôàñóëåâè ðàñòåíèÿ (Phaseolus vulgaris L.), îòãëåäàíè ïðè êîíòðîëíè óñëîâèÿ (õðàíèòåëåí ðàçòâîð) è â
óñëîâèÿ íà çàñîëÿâàíå (100 mM NaCl è Na2SO4, äîáàâåíè êúì õðàíèòåëíèÿ ðàçòâîð). Áåøå îò÷åòåíî, ÷å â ëèñòàòà
íà çàñîëåíèòå ðàñòåíèÿ àêòèâíîñòòà íà èçñëåäâàíèòå åíçèìè ñå ïîâèøàâà (ÀÏÎ, ÌÄÕÀÐ, ÄÕÀÐ), à â êîðåíèòå ñå
íàìàëÿâà. Ïðè òðåòèðàíåòî ñ íàòðèåâ ñóëôàò áåøå îò÷åòåíà ïî-âèñîêà åíçèìíà àêòèâíîñò â ëèñòàòà íà èçñëåäâàíèòå
ðàñòåíèÿ â ñðàâíåíèå ñ òåçè, çàñîëåíè ñ íàòðèåâ õëîðèä. Îò÷åòåíî áåøå ñúùî, ÷å òðåòèðàíåòî ñ Na2SO4 ïîíèæàâà
â ïî-ãîëÿìà ñòåïåí àêòèâíîñòòà íà åíçèìèòå.
 ðåçóëòàò íà ñîëåâèÿ ñòðåñ è ïðè äâàòà âèäà çàñîëÿâàíå àêòèâíîñòòà íà åíçèìà êàòàëàçà (ÊÀÒ) áåøå
ïîâèøåíà â êîðåíèòå è ïîíèæåíà â ëèñòàòà â ñðàâíåíèå ñ íåòðåòèðàíèòå ðàñòåíèÿ.
Íàáëþäàâàíèòå ðàçëèêè â åíçèìíèòå àêòèâíîñòè ïîêàçâàò ñïåöèôè÷íà ðåàêöèÿ ïðè ðàçëè÷íèòå îðãàíè íà
ôàñóëåâèòå ðàñòåíèÿ, êàêòî è â çàâèñèìîñò îò âèäà íà ïðèëîæåíèòå ñîëè.
Abstract
The effect of salt stress on the activity of antioxidative enzymes was studied in leaves and roots of bean plants
(Phaseolus vulgaris L.), grown under control (nutrient solution) and salt stress (nutrient solution containing 100 mM NaCl
and Na2SO4) conditions. In the leaves of salt-stressed plants, ascorbate connected enzymes (APX, MDHAR and DHAR)
demonstrated increased activity and at the same time their activity was decreased the in roots. The increase of the enzyme
activity was more pronounced under sodium sulfate compared with the chloride treatment in the bean leaves. In saltstressed
roots the Na2SO4 application reduced the activity at a higher degree. As a result of the two salt treatments of bean
plants the CAT activity were increased in the roots and decreased in the leaves as compared with the control.
The observed differences in the enzyme activities show the specific reaction in the different organs of the bean
plants as well as the dependence on the kind of the applied salts.
Êëþ÷îâè äóìè: àíòèîêèñëèòåëíè åíçèìè, ñîëåâè ñòðåñ, Phaseolus vulgaris L.
Key words: Antioxidant enzymes; salt stress, Phaseolus vulgaris L.
Ñúêðàùåíèÿ: ÀÊÂ - àêòèâèðàíè êèñëîðîäíè âèäîâå, ÀÏÎ - àñêîðáàò ïåðîêñèäàçà, ÊÀÒ - êàòàëàçà, ÄÕÀÐ -
äåõèäðîàñêîðáàò ðåäóêòàçà, ÌÄÕÀÐ - ìîíîäåõèäðîàñêîðáàò ðåäóêòàçà.
Abbreviations: ROS - reactive oxygen species; APX - ascorbate peroxidase; CAT - catalase; DHAR - dehydroascorbate
reductase; MDAR - monodehydroascorbate reductase.
INTRODUTION
Salinity is one of the major abiotic stresses that
adversely affect crop productivity and quality, especially in
arid and semi-arid climates (Khan, 2008). It may occur
naturally or as result of management practices. Salinity not
only decreases the agricultural production of crops, but also,
affects the associated ecological balance of the area. Soil
salinization in Bulgaria is spread in form of spots widely
and mainly in irrigated regions with intensive agriculture
(Trendafilof, 2001; Ivanova, 2006).
42
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
The high salinity levels of soil and irrigation water
are known to affect many physiological and metabolic
processes, leading to yield reduction (Nemoto, 2002).
Inhibition of plant growth and even plant death by salinity is
due to a reduction in water availability, sodium ion
accumulation and mineral imbalances. All these factors
manifest themselves in morphological, physiological and
metabolic modifications in plants (Sairam, 2004).
In addition, salt stress also leads to oxidative stress
through an increase in the production of reactive oxygen
species (ROS) which can damage membrane lipids,
proteins and nucleic acids (Mittler, 2002).
Higher plants possess enzymatic and nonenzymatic
mechanisms to cope with oxidative damage. The
ascorbate-glutathione cycle is one efficient way to dispose
of H2O2 and makes use of the non-enzymatic antioxidants
ascorbate and glutathione in reactions catalyzed by the
antioxidant enzymes (Noctor, 1998). Enzymatic antioxidants
like superoxide dismutase (SOD), catalase (CAT), ascorbate
peroxidase (APOX), peroxidase (POD), and glutathione
reductase (GR) are the principal ROS scavenging systems.
SOD dismutates superoxide radicals to hydrogen peroxide,
whereas CAT and peroxidases dismutate H2O2 into water
and oxygen. GR and MDHAR are involved in the regeneration
of ascorbate (Reddy et al., 2004).
Most salinity studies have involved the
determination of crop responses to NaCl salinity
(Cavalcanti, 2007; Telesinski, 2008). However, there is
reason to suspect that responses to SO4
- 2 salinity may differ
from those observed in a Cl¯ salt system. There have been
comparatively few studies examining plant responses to
situations where Na2SO4 salinity dominates. However,
Na2SO4 is present in higher concentrations than NaCl in
soil and groundwater in many parts of the world (Rogers et
al., 1998). Also, there is very limited information about the
antioxidative responses of roots (Khan, 2002; Gapinska,
2008), which are the first organs directly exposed to salinity.
Therefore, in order to understand better the
biochemical mechanism of salt response, the aim of this
study was to determine the activities of investigated
enzymes in different organs of beans.
MATERIALS AND METHODS
Growth of plants. The bean plants (Phaseolus
vulgaris, cv. Lody) were grown in a greenhouse in pots on
perlite and ½ Hoagland nutrient solution was added in the
trays. The treatment was for 7 days with 100 mM NaCl and
100 mM Na2SO4, starting at the appearance of the first
trifoliate leaf unfolded. The volume of the nutrient solution
was kept constant and salt concentrations as well as pH
were controlled every second day.
Assays of antioxidant enzyme. The extract
preparation was performed according to published
procedures (Götz and Schröder, 2005). Extracts were
stored at -80°C until used. Spectrophotometric assays were
employed to determine CAT (EC 1.11.1.6) according to
Verma and Dubey, 2003; APX (EC 1. 11. 1. 11) according
to Vanacker et al., 1998; MDHAR (EC 1. 6. 5. 4) and DHAR
(EC 1. 8. 5. 1) according to Foyer, 1993. Protein contents
was estimated according to Bradford (1976).
Statistical analysis. Data presented are means
± standard deviation of six replicates. The data means were
compared by the least significance differences test (L.S.D)
using SPSS program.
RESULTS AND DISCUSSION
Oxidative stress is one consequence of salinity
that may be responsible for much of the damage observed
in the field and our experiments. We investigated the
immediate enzymatic responses towards salinity-induced
oxidative stress in different organs of bean plants.
APX is the most important peroxidase in H2O2
detoxification in aerobic cells, catalysing the reduction of
H2O2 to water using the reducing power of ascorbate
(Jebara, 2005). In plants CAT has been identified to be
predominant in the detoxification of H2O2 (Noctor, 2002).
DHAR and MDHAR are involved in enzymatic regeneration
of ascorbate. Therefore, it may be supposed that CAT and
APX, both responsible for detoxification of H2O2, are
probably equally important in the detoxification in plant
organs (Yasar, 2008). These enzymes were also reported
to be important in salt tolerance in cotton (Meloni, 2003),
and maize genotypes (Neto, 2006).
The coordination among enzymatic activities,
antioxidant substrate flux, and gene expression in roots
might be different from that of leaves (Cavalcanti, 2007),
even though these two organs share almost the same
enzymatic machinery.
In our study, CAT activity was found to be much
higher in roots than in leaves of beans under salt stress.
The increase in enzyme activities was more pronounced
after NaCL application. Some reports have demonstrated
that leaf CAT is very sensitive to salt stress (Cavalcanti,
2007). Our results are in agreement with these of Eyidogan
(2007) but different from Yasar (2008).
In salt treated plants (NaCl and Na2SO2) ascorbate
connected enzymes (APX, MDHAR and DHAR)
demonstrated enhanced activity in leaves and at the same
time the activity were depressed in roots. There are
published reports that support the results (Jebara, 2005)
but also papers with opposite data (Chaparzadeh, 2004).
In this context, our results are showing a saltinduced
root CAT activity, contrasting with the observed
response of leaves, where the CAT activity was very
sensitive to salt exposure and inhibited. Considering that
salinity did not affect the CAT activity in roots of beans, our
results suggest a less active ascorbate–glutathione cycle
in roots.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
43
Òàáëèöà 1. Åôåêò íà çàñîëÿâàíåòî âúðõó àêòèâíîñòòà íà íÿêîè åíçèìè ïðè ôàñóë. Àêòèâíîñòòà å èçìåðåíà â
ìkat/mg ïðîòåèí. Ïðåäñòàâåíè ñà ñðåäíèòå ñòîéíîñòè îò øåñò èçìåðâàíèÿ
Table 1. Effect of salinity on the enzyme activities in bean plants. Activity is expressed in ìkat/mg protein. Each value
represents of six measurements and SD determined
Параметри/
Parameters
CAT APX MDHAR DHAR
Листа /Leaves
Контрола /Control 670,95±6,95
a
0,61±0,10
a
0,49±0,05
a
1,64±0,25
a
NaCl 519,31±57,26
b
1,24±0,29
b
0,56±0,10
a
4,18±0,38
c
Na2SO4 148,16±72,05
c
0,84±0,18
a
0,96±0,39
b
2,91±0,78
b
Корени/ Roots
Контрола/ Control 76,04±17,84
a
0,94±0,20
a
0,71±0,14
a
1,80±0,57
a
NaCl 196,58±35,63
b
0,75±0,20
b
0,40±0,13
c
0,64±0,49
b
Na2SO4 189,69±45,98
b
0,23±0,06
c
0,54±0,17
b
0,42±0,24
c
Within the same column values followed by the same letter (a, b or c) are not different for P< 0.05.
Our experiments further suggest that the induction
of APX in the leaves of bean plants subjected to salt stress
may be mediated by the overproduction of H2O2 under
conditions of catalase deactivation. On the other hand, the
low leaf CAT activity suggests that the enzyme suffered
irreversible damage to its structure and/or that very low
rates of de novo synthesis occurred.
During salinity treatment, MDHAR and DHAR have
shown different activities against the oxidative stress as
compared to the control, but whereas DHAR reacts similarly
to the APX activities, MDHAR remains almost constant and
is induced only at low rates.
The results obtained in the present work clearly
demonstrate that the application of both salts to the root
medium resulted in oxidative responses in bean plants. The
indicators of this physiological state were the modified
activity of antioxidant enzymes. The observed difference
in the enzyme activity shows salts and organs specific
reaction in the bean plants.
In conclusion, bean roots and leaves present distinct
mechanisms of response to salinity stress.
REFERENCES
Òðåíäàôèëîâ, Ê., 2001. Ìåòîäè è òåõíîëîãèè çà
âúçñòàíîâÿâàíå íà óâðåäåíè ïî÷âè è òåðåíè.
Ïëîâäèâ, Àêàäåìè÷íî èçäàòåëñòâî íà ÂÑÈ, 89-107.
Bradford, M. M., 1976. A rapid and sensitive method for
the quantitation of microgram quantities of protein
utilizing the principle of protein dye-binding. – Analyt.
Biochem., 72, 248-254.
Calvalcanti, F. R., J. P. M. S. Lima, S. L. Ferreira-Silva, R.
A. Viegas, J. A. G. Silveira, 2007. Roots and leaves
display contrasting oxidative response during salt stress
and recovery in cowpea. – Journal of Plant Physiology,
164, 591-600.
Chaparzadeh, N., M. L. D’Amico, R. Khavari-Nejad, R. Izzo,
F. Navari-Izzo, 2004. Antioxidative responses of
Calendula offýcinalis under salinity conditions. – Plant
Physiol. and Biochem., 42, 695-701.
Gapinska, M., M. Sklodowska, B. Gabara, 2008. Effect of
short- and long-therm salinity on the activities of
antioxidative enzymes and lipid peroxidation in tomato
roots. – Acta Physiol. Plant., 30, 11-18.
Gotz, C., P. Schroder, 2005. Herbicide resistance in
Convolvulus and Calystegia – a matter of GST activity?
– In: Proc. Int. Crop. Sci. Technol. Congress, British
Crop Protection Council, Alton, Hampshire, 169-174.
Eyidogan, F., M. T. Oz, 2007. Effect of salinity on antioxidant
responses of chickpea seedlings. – Acta Physiol. Plant.,
29, 485-493.
Foyer, C., 1993. Ascorbic acid. – In: Antioxidants in higher
plants. Alscher RG and Hess JL. (eds), CRC Press,
Boca Raton, Ann. Arbor., London, Tokyo, pp. 31-58.
Jebara, S., M. Jebara, F. Limam, M. E. Aouani, 2005.
Changes in ascorbate peroxidase, catalase, guaiacol
peroxidase and superoxide dismutase activities in
common bean (Phaseolus vulgaris) nodules under salt
stress. – J. of Plant Phusiol., 162, 929-936.
Ivanova, A., J. Nechev, K. Stefanov, 2006. Effect of soil
salinity on the lipid composition of halophyte plants from
the sand bar of Pomorie. – Gen. Appl. Plant Physiology,
Special Issue, 125-130.
Khan, M. H., K. L. B. Singha and S. K. Panda, 2002.
Changes in antioxidant levels in Oryza sativa L. roots
subjected to NaCl-salinity stress. – Acta Physiol. Plan.,
Vol. 24 (2), 145-148.
Khan, M. H., S. K. Panda, 2008. Alterations in root lipid
peroxidation and antioxidative responses in two rice
cultivars under NaCl-salinity stress. – Acta. Physyol.
Plant., 30, 91-89.
44
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Meloni, D.A., M. A. Oliva, C. A. Martinez and J. Cambraia,
2003. Photosynthesis and Activity of Superoxide
Dismutase, Peroxidase and Glutathione Reductase in
Cotton under Salt Stress. – Environ. Exp. Bot., Vol. 49,
69-79.
Mittler, R., 2002. Oxidative stress, antioxidants and stress
tolerance. – Trends in Plant Science, 7, 405-410.
Nemoto, Y., T. Sasakuma, 2002. Differential stress
responses of early salt-stress responding genes in
common wheat. – Phytochemistry, 61 (2), 129-133.
Neto, A.D.A., J. T. Prisco, J. Enéas-Filho, E.B.A. Carlos
and G.F. En’eas, 2006. Effect of salt stress on
antioxidative enzymes and lipid peroxidation in leaves
and roots of salt-tolerant and salt-sensitive maize
genotypes. – Environ. Exp. Bot., Vol. 56, 87-94.
Noctor, G., C. H. Foyer, 1998. Ascorbate and glutathione:
keeping active oxygen under control. – Annu. Rev. Plant.
Phys. Plant Mol. Bio., 49, 249-279.
Noctor, G., L. Gomez, H. Vanacker and C. H. Foyer, 2002.
Interactions between biosynthesis, compartmentation
and transport in the control of glutathione homeostasis
and signaling. – J. of Exper. Botany, 53 (372), 1283-
1302.
Reddy, A.R., K. V. Chaitanya, P. P. Jutur, K. Sumithra, 2004.
Differential antioxidative responses to water stress
among five mulberry (Morus alba L.) cultivars. – Environ.
Exp. Bot., 52, 33-42.
Rogers, M.E., C. M. Grieve, M. C. Shannon, 1998. The
response of Lucerne (Medicago sativa L.) to sodium
sulphate and chloride salinity. – Plant Soil, 202, 271-
280.
Sairam, R.K., A. Tyagi, 2004. Physiology and molecular
biology of salinity stress tolerance in plants. – Curr. Sci.,
86, 407-421.
Telesinski, A., J. Nowak, B. Smolik, A. Dubowska, N.
Skrzypiec, 2008. Effect of soil salinity on activity of
antioxidant enzymes and content of ascorbic acid and
ACKNOWLEDGEMENTS
Funding to Miroslava Kaymakanova by a
“Programe for support of PhD students with specialty
in Agriculture and other similar sciences” and financial
support to Dobrinka Balabanova by the “DBU-Deutsche
Bundesstiftung Umwelt” are gratefully accepted. As
well as the co-operation and help of the Department
Microbe-Plant Interactions, Helmholtz Zentrum
München.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Àíäîí Âàñèëåâ
E-mail: vassilev@au-plovdiv.bg
phenols in bean (Phaseolus Vulgaris L.) plants. – J.
Elementol, 13 (3), 401-409.
Vanacker, H., T. L. W. Carver, C. H. Foyer, 1998. Pathogeninduced
changes in the antioxidant status of the apoplast
in barley leaves. – Plant Phys., 117, 1103-1114.
Verma, S., R. S. Dubey, 2003. Lead toxicity induces lipid
peroxidation and alters the activities of antioxidant
enzymes in growing rice plants. – Plant Science, 164,
645-655.
Yasar, F., S. Ellialtioglu and K. Yildiz, 2008. Effect of Salt
Stress on Antioxidant Defense Systems, Lipid
Peroxidation, and Chlorophyll Content in Green Bean.
– Russ. J. of Plant Physol., Vol. 55 (6), 782–786.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
45
ÒÎÊÑÈ×ÍÎ ÂÚÇÄÅÉÑÒÂÈÅ ÍÀ ÎËÎÂÎÒÎ ÂÚÐÕÓ ÔÈÇÈÎËÎÃÈ×ÍÈÒÅ ÏÀÐÀÌÅÒÐÈ ÍÀ ÂÚÐÁÀTA
(SALIX VIMINALIS L.)
THE TOXIC IMPACT OF LEAD ON THE PHYSIOLOGICAL PARAMETERS OF BASKET WILLOW (SALIX VIMINALIS L.)
Êàòàæèíà Ìàëèíîâñêà1*, ßöåê Âðóáåë1, Ðèøàðä Ìàëèíîâñêè2, Àíäæåé Ñòåðà1
Katarzyna Malinowska1*, Jacek Wrobel1, Ryszard Malinowski2, Andrzej Stera1
1Êàòåäðà “Ôèçèîëîãèÿ íà ðàñòåíèÿòà”, Êàòåäðà “Ïî÷âîçíàíèå”, Çàïàäíîïîìåðàíñêè òåõíîëîãè÷åí óíèâåðñèòåò
Ø÷å÷èí, Ïîëøà
1Department of Plant Physiology, 2Department of Soil Science, Westpomeranian Technological University in Szczecin
Szczecin, Poland
*E-mail: Katarzyna.Malinowska@zut.edu.pl
Ðåçþìå
Ïðîó÷åíà áåøå ôèçèîëîãè÷íàòà ðåàêöèÿ íà äâà êëîíà âúðáà (Bjor è Tora) íà íàðàñòâàùè êîíöåíòðàöèè îò
îëîâî (15-1000 mg.dm-3). Îò÷åòåíè áÿõà ñúäúðæàíèåòî íà ôîòîñèíòåòè÷íèòå ïèãìåíòè, èíòåíçèâíîñòòà íà CO2
àñèìèëàöèÿòà, òðàíñïèðàöèÿòà è âîäíèÿ áàëàíñ. Äîêàçàíî áåøå, ÷å ïðèëîæåíèòå äîçè îëîâî çíà÷èòåëíî íàìàëÿâàò
ñúäúðæàíèåòî íà õëîðîôèë a, b è êàðîòèíîèäèòå, íàìàëÿâàò èíòåíçèâíîñòòà íà CO2 àñèìèëàöèÿòà è òðàíñïèðàöèÿòà
ïðè èçñëåäâàíèòå êëîíèíãè. Ïîêàçàíî áåøå, ÷å å íàëèöå çíà÷èòåëíà êîðåëàöèÿ ìåæäó êîíöåíòðàöèÿòà íà îëîâî è
èíòåíçèâíîñòòà íà CO2 àñèìèëàöèÿòà, ñúäúðæàíèåòî íà õëîðîôèë a + b â ëèñòàòà íà èçñëåäâàíèòå êëîíèíãè âúðáà.
Êëîíèíãúò Bjor áåøå ïîñî÷åí êàòî ïî-óñòîé÷èâ íà ñòðåñ, ïðè÷èíåí îò âèñîêî ñúäúðæàíèå íà îëîâî.
Abstract
The effect of lead on the physiological reaction of two clones - Bjor and Tora of basket willow was studied within the
concentrations of 15-1000 mg.dm-3. The content of photosynthetic pigments, the intensity of CO2 assimilation and transpiration
and water balance were reported. It was shown that the doses of lead significantly decreased the content of chlorophyll a,
b and carotenoids, reduced the intensity of CO2 assimilation and transpiration of the examined clones. It was shown that
there was a significant correlation between the concentration of lead and the intensity of CO2 assimilation, content of
chlorophyll a + b in the leaves of the examined willow clones.The clone more resistant to the stress caused by the high lead
content in the medium was Bjor.
Êëþ÷îâè äóìè: ôîòîñèíòåòè÷íè ïèãìåíòè, CO2 àñèìèëàöèÿ, òðàíñïèðàöèÿ, âîäåí áàëàíñ, îëîâî, Salix viminalis L.
Key words: photosynthetic pigments, CO2 assimilation, transpiration, water balance, lead, Salix viminalis L.
INTRODUCTION
Basket willow (Salix viminalis L.) is used in
phytoremediation and in phytoextraction of soils
contaminated with heavy metals and also with other toxic
compounds. Due to its high abilities to accumulate harmful
substances and their degradation, it is used for protecting
plantings around industrial plants, landfills and along
motorways (Deng et al., 2006; Eltrop et al., 1991; Hermle
et al., 2006; Šottniková et al., 2003; Wrzosek et al., 2008).
According to Jensen et al. (2009) willow has the features
which classify it as an ideal plant for environmental
protection purposes, namely, resistance to temperature
changes, tolerance to water deficit and a deep root system.
Lead, as one of the most harmful heavy metals,
causes disturbances in physiological processes of plants.
It inhibits synthesis of photosynthetic dyes and creation of
reactive forms of oxygen (Chen, Kreeb, 1990; Pacha,
Galimska-Stypa, 1984; Stiborova et al., 1986; Verma and
Dubey, 2003).
The aim of the studies was to determine the
physiological reaction of clone Bjor and Tora of basket willow
(Salix viminalis L.) under the conditions of a medium
contaminated with lead and to define usefulness of this form
for bringing anthropogenically degraded areas into
cultivation.
46
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
MATERIALS AND METHODS
Material for the studies was clones of basket willow
(Salix viminalis L.). With its three clones, i.e. ‘Bjor’, ‘Jorr’
and ‘Tora’, being covered by examination. Willow cuttings
used in the experiment were taken from the plantation of
the Department of Physiology of Plants, Westpomeranian
Technological University in Szczecin. Whereas maternal
material was from a plantation in Denmark, possessing a
health certificate.
During the period from April to June 2009 basket
willow breeding was carried out in water cultures (of volume
1 dm3) filled with a 1.5-fold concentrated full Hoaland’s
medium of pH = 5.8 and with appropriate doses of lead. Lead
was introduced to the medium in a form of Pb(NO3)2. In the
experiment, set in 3 replications, the following combinations
were taken into consideration: 1 – control (a full medium
according to Hoagland); 2 – a full medium + I concentration
Pb (15 mg.dm-3); 3 – a full medium + II concentration Pb
(100 mg.dm-3); 4 – a full medium + III concentration Pb (1000
mg.dm-3). After the cuttings had rooted and the shoots had
formed, differentiated doses of Pb(NO3)2 were added
according to the experimental combination. The
determination of physiological parameters was carried out
at three dates: on the 26th (1st date), 36th (2nd date) and
46th (3rd date) day after the setting of the experiment.
Photosynthetic pigments (chlorophyll a, b and
carotenoids) were measured in fresh leaf samples before
harvesting. The concentration of pigments was determined
in fresh leaf tissue through extraction in 80% acetone.
Pigment concentrations were calculated from the
absorbance of extract at 663, 645 and 440 nm using the
formula of Lichtenthaler (1987). Water balance was defined
by the RWC index (relative water content) and WSD (water
saturation deficit). Intensity of photosynthesis and
transpiration was measured (repeating the measurements
four times) using a mobile gas analyzer TPS-2
manufactured by PP Systems (UK), at stable lighting of
2053 μmol.m-2.s-1. On the basis of the obtained results of
intensity of assimilation and transpiration the photosynthetic
efficiency of water use was calculated (ωF). The results
were worked out by means of the method of two-factor
variance using Duncan’s test at a significance level NIR0.05.
Using Pearson’s linear correlation coefficient (r), correlation
between the concentration of lead in leaves and the
examined physiological features of wheat was shown.
RESULTS AND DISCUSSION
The studies showed significant changes in
determined physiological parameters of basket willow under
the conditions of the medium contaminated with lead.
Òàáëèöà 1. Òîêñè÷íî âúçäåéñòâèå íà îëîâîòî âúðõó ñúäúðæàíèåòî íà ôîòîñèíòåòè÷íè ïèãìåíòè [mg.g-1 ñâ. òåãëî],
CO2 àñèìèëàöèÿòà [μmol.m-2.s-1], òðàíñïèðàöèÿòà [mmol.m-2.s-1], åôåêòèâíîñòòà íà èçïîëçâàíå íà âîäàòà âúâ
ôîòîñèíòåçàòà (ωf) â èçñëåäâàíèòå êëîíèíãè âúðáà
Table 1. The toxic impact of lead on the content of photosynthetic pigments [mg.g-1 FW], CO2 assimilation [μmol.m-2.s-1],
transpiration [mmol.m-2.s-1] and water use photosynthetic efficiency (ωf) in the examined clones of basket willow
Dose
of Pb
[mg ·
dm
-3
]
Chlorophyll
a
(% of
control)
Chlorophyll
b
(% of
control)
Carotenoids
(% of
control)
CO2
assimilation
(% of
control)
Transpiration
(% of
control)
Water use
photosynthetic
efficiency (ωf)
Clone Bjor
0
1.81±0.11
(100)
0.72±0.12
(100)
1.09±0.19
(100)
2.87±0.22
(100)
0.66±0.05
(100)
4.35
15
1.58±0.18
(87.3)
0.53±0.09
(73.6)
0.94±0.14
(86.2)
2.19±0.09
(76.3)
0.60±0.02
(90.1)
3.65
100
1.52±0.17
(83.9)
0.51±0.06
(70.8)
0.72±0.21
(66.1)
1.86±0.11
(64.8)
0.39±0.04
(59.1)
4.76
1000
1.29±0.13
(71.3)
0.41±0.10
(56.9)
0.76±0.15
(69.7)
1.25±0.06
(43.6)
0.22±0.06
(33.3)
5.68
Clone Tora
0
2.15±0.25
(100)
0.96±0.09
(100)
1.39±0.11
(100)
5.50±0.24
(100)
0.65±0.10
(100)
8.46
15
2.08±0.19
(96.7)
0.76±0.15
(79.2)
1.12±0.07
(80.6)
3.70±0.17
(67.3)
0.52±0.09
(80.0)
7.11
100
1.54±0.09
(71.6)
0.64±0.08
(66.7)
0.97±0.10
(69.8)
2.32±0.10
(42.2)
0.33±0.08
(50.7)
7.03
1000
0.97±0.07
(44.6)
0.43±0.03
(44.8)
0.62±0.04
(44.6)
1.40±0.12
(25.5)
0.21±0.09
(32.3)
6.67
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
47
The applied doses of lead resulted in a decrease
in the content of photosynthetic pigments in leaves of the
examined clones of basket willow. An unfavourable effect
of the length of actiivity period of lead doses added to the
medium on the physiological parameters was observed.
The addition of Pb at the rate of 1000 mg.dm-3 to the medium
caused a decrease in the concentration of chlorophyll a in
Bjor clone by 28.7%, whereas in Tora clone by 55.4% (Table
1). The content of chlorophyll b in leaves of Bjor clone and
Tora clone in the presence of the highest rate of lead
constituted respectively 56.9% and 44.8% in relation to the
control plant (Table 1). The contamination of the medium
with lead also caused a significant decrease in the content
of carotenoids in leaves of the studied clones. The largest
decrease in the amount of this dye in Bjor clone was
observed after addition of 100 mg.dm-3 of lead to the
medium, whereas the largest decrease in the content of
this dye in Tora clone was noticed at the highest rate of
lead (Table 1). The inhibition of chlorophyll synthesis results
from the activity of different heavy metals. Stronger inhibition
of chlorophyll b synthesis as compared to chlorophyll a in
leaves of barley was recorded by Stiborova et al. (1986).
Chen and Kreeb (1990) observed an over twofold decrease
in chlorophyll in maize under the influence of heavy metals
activity, as compared to the control. A decreased amount
of chlorophyll a, in spring wheat by 29.4% and chlorophyll
b by 50% after a dose of 1035 mg.kg-1 of soil had been
applied, was reported by Malinowska and Smolik (2006).
The research works carried out by Becerril et al. (1988)
showed in lucerne and clover a decrease both in chlorophyll
a and b and in carotenoids after the application of lead.
Increasing doses of lead in the medium
significantly inhibited intensity of CO2 assimilation and
transpiration in the studied clones of basket willow. The
largest decrease in the intensity of the studied physiological
processes was observed when a maximum dose was
applied at all the times of the experiments. The intensity of
the photosynthesis process at the rate of 1000 mg.dm-3
decreased by 56.4% in clone Bjor and by 74.5% in clone
Tora, whereas the intensity of transpiration in the
investigated clones of willow decreased by 67% as
compared to the control (Table 1). A decrease in the index
of effectiveness of the use of water in photosynthesis was
observed in Tora clone at all the rates as compared to the
control plants. Whereas the addition of lead to the medium
at the rate of 100 and 1000 mg.dm-3 in Bjor clone caused
an increase in this index as compared to the control. A high
value of this parameter results first of all from low intensity
of transpiration. The decrease in the intensity of
photosynthesis caused by lead was shown, among others,
by Becerril et al. (1989), Malinowska and Smolik (2006),
Poskuta et al. (1987). On the basis of the value of the
coefficient of correlation a significant negative relationship
between the concentration of lead in leaves of the studied
clones of willow and the content of chlorophyll a+b and
CO2 assimilation (Fig. 2) was stated.
The indices of water balance changes are, among
others, RWC and WSD. The increasing doses of lead
resulted in a decrease in the water content in leaves of the
examined clones of basket willow. The largest decrease in
the index of relative content of water by 11.1% in Bjor and
by 10.2% in Tora was observed after the application of the
Ôèã. 1. Âîäåí èíäåêñ (%) ïðè âúðáàòà (Bjor and Tora) â çàâèñèìîñò îò äîçàòà íà îëîâîòî
Fig. 1. Water indices (%) of basket willow – of clone Bjor and Tora in relation to a dose of the lead
0
10
20
30
40
50
60
70
80
90
100
[%]
0 15 100 1000 0 15 100 1000
doses of lead
Bjor Tora
Water balance
WSD
RWC
48
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Ôèã. 2. Êîðåëàöèÿ ìåæäó ñúäúðæàíèåòî íà ôîòîñèíòåòè÷íè ïèãìåíòè [mg.g-1 ñâ. òåãëî], CO2 àñèìèëàöèÿòà
[μmol.m-2.s-1] è ñúäúðæàíèåòî íà îëîâî â ëèñòàòà îò âúðáà
Fig. 2. Correlation between the content of photosynthetic pigments [mg.g-1 FW], CO2 assimilation [μmol.m-2.s-1] and the content of
lead in the leaves of basket willow
highest rate of lead as compared to the control plants (Fig.
1). The observed changes of intensity of the studied
physiological parameters can be caused, under
unfavourable conditions, by both stress and repair
mechanisms (Starck, 2002).
The obtained results of the studied physiological
parameters can be useful for the assessment of the
resistance of the studied clones of willow to stress caused
by lead and their usefulness for reclamation of the areas
anthropogenically degraded. Clone Bjor of basket willow
was characterised by higher values of the physiological
parameters defined under stress and that suggests its
higher tolerance to stress resulted from a high content of
lead in the medium.
CONCLUSIONS
1. The applied doses of lead reduced the intensity of
assimilation of CO2 and transpiration and the content of
photosynthetic pigments in leaves of the studied clones
of basket willow.
2. The addition of lead to the medium caused a decrease
in the index of the relative content of water and an
increase in the deficit of water saturation in leaves of the
studied clones of basket willow.
3. Clone Bjor of basket willow showed higher tolerance to
the stress caused by a high content of lead in the medium.
REFERENCES
Becerril, J.M., Munoz-Rueda A., Aparicio-Tejo P., Gonzales-
Murua C., 1988. The effects of cadmium and lead on
photosynthetic elektron transport In clover and lucerne.
– Plant Physiol. Biochem, 26: 357–363.
Becerril, J.M.,González-Murua C., Munoz-Rueda A.,
Rosario De Felipe M., 1989. Changes induced by
cadmium and lead in gas exchange and water relations
of clover and Lucerne. – Plant Physiol. Biochem, 27:
913–918.
Chen, T., Kreeb H.K., 1990. Investigation of combined
effects of Pb, NaCl and water deficit on Zea mays L. –
In: (ed.) Boháè J. Proceedings of the VI international
conference – Bioindicatores Deteriorisationis Regionis.
Institute of Landscape Ecology CAS, Èeské Budejovice,
348–356.
BJOR
y = 2,8246 - 0,0180 * x
r = - 0,9232
0 10 20 30 40 50 60 70 80
content of Pb [mg
.
kg
-1
d.m.]
0,0
0,4
0,8
1,2
1,6
2,0
2,4
2,8
3,2
content of chlorophyll a+b
95% p.ufności
BJOR
y = 2,9745 - 0,0214 * x
r = - 0,8961
0 10 20 30 40 50 60 70 80
contet od Pb [mg
.
kg
-1
d.m.]
0,0
0,4
0,8
1,2
1,6
2,0
2,4
2,8
3,2
3,6
CO2 assimilation [umol
.
m
-2 .
s
-1
]
95% p.ufności
TORA
y = 3,2385 - 0,0717 * x
r = - 0,8341
0 5 10 15 20 25 30
content of Pb [mg
.
kg
-1
d.m.]
0,0
0,4
0,8
1,2
1,6
2,0
2,4
2,8
3,2
3,6
content of chlorophyll a+b
95% p.ufności
TORA
y = 5,5785 - 0,1499 * x
r = - 0,8907
0 5 10 15 20 25 30
content of Pb [mg
.
kg
-1
d.m.]
0
1
2
3
4
5
6
7
CO2 assimilation [umol
.
m
-2 .
s
-1
]
95% p.ufności
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
49
Deng, H., Ye Z.H., Wong M.H., 2006. Lead and zinc
accumulation and tolerance in populations of six wetland
plants”. – Enviromental Pollution, 141: 69–80.
Eltop, L., Bron G., Joachim O., Brinkmann K., 1991. Lead
tolerance of Betula and Salix in themining area of
mechernich. – Plant and Soil, 131: 275–285.
Hermle, S., Günthardt-Goerg M., Schulin R., 2006. Effects
of metal-contaminated soil on the performance of Young
trees growing in model ecosystems under field
conditions. – Enviromental Pollution, 144: 703-714.
Jensen, J.K., Holm P.E., Nejrup J., Larsen M.B., Borggaard
O.K., 2009. The potential of willow for remediation of
heavy metal polluted calcareous urban soils. –
Enviromental Pollution, 157: 931-937.
Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids:
Pigments of photosynthetic biomembranes. – Methods
Enzymol, 148: 350–380.
Malinowska, K., Smolik B., 2006. Wp³yw ró¿nych dawek
metali ciezkich na aktywnosc enzymow stresu
oksydacyjnego oraz parametry fizjologiczne pszenicy
jarej. Cz. II Wp³yw o³owiu. – Zesz. Prob. Post. Nauk
Rol, 515: 381-388.
Pacha, J., Galimska-Stypa R., 1984. Wlasciwosci
mutagenne wybranych zwiazkow kadmu, cynku, miedzi
i o³owiu. – Acta Biol. Sile, 15: 20–27.
Poskuta, J.W., Parys E., Romanowska E., 1987. The effects
of lead on the gaseous exchange and photosynthetic
carbon metabolism of pea seedlings. – Acta Soc. Bot.
Pol, 56: 127–137.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Íåâåíà Ñòîåâà
e-mail: stoeva_au_bg@yahoo.ca
Sottnikova, A., Lunaekova L., Masarovieova E., Lux A.,
Stresko V., 2003. Changes in the rooting and growth of
willows and populars induced by cadmium. – Biologia
Plantarum, 46(1): 129–131.
Starck, Z., 2002. Mechanizmy integracji procesow
fotosyntezy i dystrybucji biomasy w niekorzystnych
warunkach srodowiska. – Zesz. Prob. Post. Nauk Rol,
481:113–123.
Stiborova, M., Doubravova M., Brezinova A., 1986. Effect
of heavy metal ions on growth and biochemical
characteristics of photosynthesis of barley (Hordeum
vulgare L.). – Photosynthetica, 20: 418–425.
Wrzosek, J., Gawronski S., Gworek B., 2008.
Zastosowanie roslin energetycznych w technologii
fitoremediacji. Ochr. Srod. i Zas. Natur, 37: 139–151.
Verma, S., Dubey R.S., 2003. Lead toxicity induces lipid
peroxidation and alters the activities of antioxidant
enzymes in growing rice plants. – Plant Sci., 164, 4:
645–655.
50
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
51
ÌÅÒÀËÍÀ ÔÈÒÎÒÎÊÑÈ×ÍÎÑÒ – ÏÎÄÕÎÄßÙÈ ÈÍÄÈÊÀÒÎÐÈ È ÒÅÑÒÎÂÅ ÇÀ ÅÊÎÒÎÊÑÈÊÎËÎÃÈ×ÍÀ
ÎÖÅÍÊÀ ÍÀ ÇÀÌÚÐÑÅÍÈ ÏÎ×ÂÈ
METAL PHYTOTOXICITY: SUITABLE INDICATORS AND TESTS FOR ECOTOXICOLOGICAL EVALUATION OF
CONTAMINATED SOILS
Àíäîí Âàñèëåâ1*, Ìàëãîæàòà Áåðîâà1, Íåâåíà Ñòîåâà1, Çëàòêî Çëàòåâ1, Íèêîëàé Äèíåâ2
Andon Vassilev1*, Malgozata Berova1, Nevena Stoeva1, Zlatko Zlatev1, Nikolay Dinev2
1Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ
2Èíñòèòóò ïî ïî÷âîçíàíèå “Íèêîëà Ïóøêàðîâ”, Ñîôèÿ
1Agricultural University of Plovdiv
2Soil Science Institute “Nickola Pushakarov”, Sofia
*E-mail: vassilev@au-plovdiv.bg
Ðåçþìå
Ìåòàëíàòà ôèòîòîêñè÷íîñò å ïðîáëåì â ÷àñò îò çàìúðñåíèòå ñ òåæêè ìåòàëè ïî÷âè. Âèçóàëíè íåéíè ñèìïòîìè
ñà íåñïåöèôè÷íè õëîðîçè è íåêðîçè â îðãàíèòå íà ðàñòåíèÿòà. Ïðåäèçâèêàíèòå îò òåæêèòå ìåòàëè ñòðóêòóðíîôóíêöèîíàëíè
íàðóøåíèÿ âîäÿò äî ïîòèñêàíå íà ðàñòåæà è äî ïîíèæàâàíå íà ðàñòèòåëíàòà ïðîäóêòèâíîñò. Çà
îöåíêà íà áèîëîãè÷íîòî êà÷åñòâî íà çàìúðñåíèòå ïî÷âè ñå èçïîëçâàò áèîòåñòîâå, â òîâà ÷èñëî è ðàñòèòåëíè òåñòîâå.
 íàñòîÿùèÿ îáçîð å ïîêàçàíî, ÷å ðåäèöà ôèçèîëîãè÷íè ïîêàçàòåëè, êàòî ñêîðîñò íà ðàñòåæà, àêòèâíîñò íà
àíòèîêèñëèòåëíè åíçèìè, êîëè÷åñòâî íà ôîòîñèíòåòè÷íèòå ïèãìåíòè, ñêîðîñò íà ôîòîñèíòåçàòà è äðóãè, èìàò âèñîêà
÷óâñòâèòåëíîñò êúì òåæêèòå ìåòàëè è ìîãàò äà áúäàò èçïîëçâàíè êàòî èíäèêàòîðè íà ìåòàëíà ôèòîòîêñè÷íîñò.
Ïðåäñòàâåíè ñà ðåçóëòàòè, ñâúðçàíè ñ ðàçðàáîòâàíåòî íà òåñò ñ êðàñòàâè÷íè ðàñòåíèÿ è íåãîâîòî ïðèëîæåíèå çà
îöåíêà íà ôèòîòîêñè÷íîñòòà íà çàìúðñåíè ñ òåæêè ìåòàëè ïî÷âè.
Abstract
Metal phytotoxicity is a topical problem in a part of soils contaminated by heavy metals. Nonspecific chlorosis and
necrosis are visual toxicity symptoms in plant organs. Heavy metal-induced structural-functional disorders lead to growth
retardation and decreased plant productivity. The biological quality of the contaminated soils is evaluated through biotests,
including phytotests. In the present review-paper it is shown that a number of physiological parameters, such as growth
rate, antioxidative enzyme activities, photosynthetic pigments content, etc. have high sensitivity to heavy metals and may
be used as indicators of metal phytotoxicity. Data concerning both the development of a new test with cucumber plants and
its application for evaluation of phytotoxicity of metal-contaminated soils are presented.
Êëþ÷îâè äóìè: òåæêè ìåòàëè, ðàñòèòåëíè òåñòîâå, ôèòîòîêñè÷íîñò, ðàñòåæ, ôîòîñèíòåçà.
Key words: heavy metals, plant tests, phytotoxicity, growth, photosynthesis.
ÓÂÎÄ
Çàìúðñÿâàíåòî íà ïî÷âèòå ñ òåæêè ìåòàëè (ÒÌ)
å àêòóàëåí åêîëîãè÷åí ïðîáëåì. Îñâåí ïîòåíöèàëíà
îïàñíîñò çà çäðàâåòî íà õîðàòà ÒÌ ÷åñòî ïðåäèçâèêâàò
ïðîÿâè íà ìåòàëíà ôèòîòîêñè÷íîñò, êîèòî ïîòèñêàò
ðàñòåæà è íàìàëÿâàò ïðîäóêòèâíîñòòà íà ðàñòåíèÿòà.
 òîçè àñïåêò ÒÌ â îïðåäåëåíè ñëó÷àè ñà ñòðåñîâ
ôàêòîð çà ðàñòåíèÿòà. Ïðîöåñèòå íà åñòåñòâåíî
î÷èñòâàíå íà ïî÷âèòå îò ÒÌ ïðîäúëæàâàò õèëÿäè
ãîäèíè, ïîðàäè êîåòî çàìúðñåíèòå ïî÷âè íîñÿò
ïîñòîÿíåí ðèñê çà çäðàâåòî íà õîðàòà è óñòîé÷èâîòî
ôóíêöèîíèðàíå íà åêîñèñòåìèòå (McGrath, 1987). Òîâà
ïðîâîêèðà èíòåðåñ êúì ðàçðàáîòâàíå íà òåõíîëîãèè çà
áåçîïàñíî è ðàöèîíàëíî èçïîëçâàíå íà çàìúðñåíèòå ñ
ÒÌ ïî÷âè.
Èçáîðúò íà òåõíîëîãèÿ çàâèñè îò ñòåïåíòà íà
çäðàâíèÿ ðèñê è ôèòîòîêñè÷íîñòòà íà çàìúðñåíàòà ñ
ÒÌ ïî÷âà. Ïðè îöåíêà íà ïîòåíöèàëíàòà áèîòîêñè÷íîñò
íà çàìúðñåíàòà ïî÷âà íàðåä ñúñ ñòàíäàðòíèòå õèìè÷íè
è ôèçè÷íè ìåòîäè ñå èçïîëçâàò è áèîòåñòîâå ñ
æèâîòèíñêè âèäîâå, ìèêðîîðãàíèçìè è ðàñòåíèÿ
(Adriano, 2001). Èçïîëçâàíåòî íà ðàñòèòåëíè òåñòîâå çà
52
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
îöåíêà íà ôèòîòîêñè÷íîñòòà íà çàìúðñåíàòà ñ ÒÌ ïî÷âà
ñå íàëàãà ïîðàäè ôàêòà, ÷å îáùàòà êîíöåíòðàöèÿ íà
îòäåëíèòå ÒÌ â ïî÷âàòà íå äàâà ïðåäñòàâà çà òÿõíàòà
ïîäâèæíîñò, äîñòúïíîñò è áèîòîêñè÷íîñò (Vangronsveld
and Clijsters, 1992). Îñâåí òîâà â ïðåîáëàäàâàùèÿ áðîé
ñëó÷àè ïî÷âèòå ñà çàìúðñåíè ñ êîìïëåêñ îò ÒÌ è
ñëåäîâàòåëíî òÿõíàòà òîêñè÷íîñò ìîæå äà áúäå
ðåçóëòàò êàêòî íà äåéñòâèåòî íà åäèí êîíêðåòåí ìåòàë,
òàêà è íà âçàèìîäåéñòâèÿòà ìåæäó òÿõ – ñèíåðãèòè÷íè,
àíòàãîíèñòè÷íè èëè àäèòèâíè.
Ïðåöåíêàòà çà ôèòîòîêñè÷íîñòòà íà çàìúðñåíèòå
ñ ÒÌ ïî÷âè ÷åñòî ñå ïðàâè èíäèðåêòíî, íà áàçàòà
íà íàìàëÿâàíåòî íà äîáèâèòå â ñðàâíåíèå ñ òåçè â
áëèçêè, íåçàìúðñåíè ðàéîíè. Ñòàíäàðòèçèðàíèòå
ðàñòèòåëíè òåñòîâå çà êîðåêòíî îïðåäåëÿíå íà
ôèòîòîêñè÷íîñòòà íà çàìúðñåíè ñ ÒÌ ïî÷âè ñà
ñðàâíèòåëíî ìàëêî íà áðîé. Êàòî èíäèêàòîðè íà
ôèòîòîêñè÷íîñòòà â ïîâå÷åòî òåñòîâå ñå èçïîëçâàò
ïîêúëâàíåòî íà ñåìåíàòà, áèîìåòðè÷íè ïàðàìåòðè íà
ðàñòåíèÿòà, àêòèâíîñòòà íà ñòðåñ-÷óâñòâèòåëíè åíçèìè
è äð. (OECD, 1984; An, 2004; Vangronsveld and Clijsters,
1992). Åäèí îò íàé-èçïîëçâàíèòå ðàñòèòåëíè òåñòîâå å
ôàñóëåâèÿò òåñò íà Vangronsveld and Clijsters (1992), â
êîéòî îñíîâíè èíäèêàòîðè ñà ëèñòíàòà ïëîù è ñâåæàòà
ìàñà íà ðàñòåíèÿòà, àêòèâíîñòòà íà ñòðåñîâè åíçèìè è
èçîåíçèìíèÿ ñïåêòúð íà ãâàÿêîë ïåðîêñèäàçàòà.
Ñúâðåìåííàòà ôèçèîëîãè÷íà íàóêà ïðåäëàãà
äîñòàòú÷íî äðóãè ÷óâñòâèòåëíè èíäèêàòîðè íà ìåòàëíà
ôèòîòîêñè÷íîñò, êîèòî ìîãàò äà áúäàò èçïîëçâàíè â
ðàñòèòåëíè òåñòîâå. Çà èíòåãðèðàíå íà èíäèêàòîðèòå â
òàêèâà òåñòîâå ñà íåîáõîäèìè äîïúëíèòåëíè
èçñëåäâàíèÿ, ñâúðçàíè ñ (1) ïîäáîðà íà òåñòîâèòå
ðàñòåíèÿ, (2) óñëîâèÿòà íà òÿõíîòî îòãëåæäàíå, (3)
êëàñèôèöèðàíåòî íà ïðîÿâåíàòà ìåòàëíà ôèòîòîêñè
÷íîñò, êàêòî è (4) ïèëîòíîòî ïðèëîæåíèå íà
ðàñòèòåëíèòå òåñòîâå çà îöåíêà çà çàìúðñåíè ñ ÒÌ
ïî÷âè. Èçñëåäâàíèÿ â òîçè àñïåêò ñå ïðîâåæäàò â
Êàòåäðàòà ïî ôèçèîëîãèÿ íà ðàñòåíèÿòà è áèîõèìèÿ â
Àãðàðíèÿ óíèâåðñèòåò – Ïëîâäèâ ïðåç ïîñëåäíèòå
íÿêîëêî ãîäèíè (Vassilev et al., 2007; Âàñèëåâ è ñúàâò.,
2009; Âàñèëåâ è Íèêîëîâà, 2010). Â íàñòîÿùèÿ îáçîð
íàêðàòêî ñà ïðåäñòàâåíè ÷àñò îò òåçè èçñëåäâàíèÿ.
Èíäèêàòîðè íà ìåòàëíà ôèòîòîêñè÷íîñò
Íåãàòèâíîòî âëèÿíèå íà ÒÌ âúðõó ðàñòåíèÿòà
å èíòåãðàëåí ðåçóëòàò îò âçàèìîäåéñòâèÿòà èì ñ ìíîãî
áèîëîãè÷íè ïðîöåñè, ïðîòè÷àùè íà ðàçëè÷íè
ñòðóêòóðíî-ôóíêöèîíàëíè íèâà. Ïîðàäè ñèñòåìèòå çà
ñàìîðåãóëàöèÿ, îáà÷å, ïðîÿâèòå íà òîêñè÷íîñò íà ïîíèñêèòå
íèâà íåâèíàãè ìîãàò äà áúäàò èçÿâåíè íà ïîâèñîêèòå
íèâà. Â òàçè âðúçêà å íåîáõîäèìî
ðàñòèòåëíèòå òåñòîâå äà âêëþ÷âàò èíäèêàòîðè íà
íàðóøåíèÿ îò ðàçëè÷íè íèâà è õàðàêòåð.
Íà êëåòú÷íî íèâî ïîäõîäÿùè èíäèêàòîðè íà
ìåòàëíàòà ôèòîòîêñè÷íîñò ñà ïðîìåíèòå â àíòèîêèñëèòåëíàòà
çàùèòíà ñèñòåìà íà êëåòêàòà è ñòðóêòóðíîôóíêöèîíàëíîòî
ñúñòîÿíèå íà ìåìáðàíèòå. Íåçàâèñèìî
÷å ÷àñò îò ÒÌ èìàò íèñúê ðåäîêñ-ïîòåíöèàë è íå
ìîãàò äà ó÷àñòâàò â îêèñëèòåëíî-ðåäóêöèîííè ïðîöåñè
(Cd, Zn, Pb), ðåäèöà èçñëåäâàíèÿ ïîêàçâàò, ÷å âñè÷êè
ïðîáëåìíè ÒÌ ìîãàò äà ïðåäèçâèêàò ðàñòèòåëíè
îòãîâîðè êúì îêèñëèòåëåí ñòðåñ (Milone et al., 2003;
Vassilev et al., 2004b). Íàé-îáùî îêèñëèòåëíèÿò ñòðåñ å
òàêîâà ñúñòîÿíèå íà êëåòêèòå, ïðè êîåòî ïðîäóêöèÿòà
íà ñâîáîäíèòå ðàäèêàëè (ñóïåðîêñèäåí ðàäèêàë •O2,
õèäðîêñèëåí ðàäèêàë •OH) è àêòèâíèòå êèñëîðîäíè
âèäîâå (ñèíãëåòåí êèñëîðîä 1O2, âîäîðîäåí ïåðîêñèä
H2O2) íàðàñòâà íàä “íîðìàëíèòå” íèâà.
Ïî ïðèíöèï êëåòêàòà ðàçïîëàãà ñ ìåõàíèçìè çà
çàùèòà îò îêèñëèòåëåí ñòðåñ, êîèòî ôóíêöèîíèðàò
èíòåãðèðàíî êàòî àíòèîêèñëèòåëíà çàùèòíà ñèñòåìà,
âêëþ÷âàùà åíçèìíè è íååíçèìíè êîìïîíåíòè.  íåÿ ñà
âêëþ÷åíè åíçèìèòå ñóïåðîêñèäíà äèñìóòàçà (SOD; ÅÑ
1.15.1.1), ïåðîêñèäàçà (POD; ÅÑ 1.11.1.7), êàòàëàçà
(CAT; ÅÑ 1.11.1.6), ìåòàáîëèòèòå (ãëóòàòèîí, àñêîðáàò)
è åíçèìèòå îò àñêîðáàò-ãëóòàòèîíîâèÿ öèêúë, êàêòî è
äðóãè àíòèîêñèäàíòè êàòî êàðîòåíîèäè è ïîëèàìèíè.
Íàé-îáùî êëåòú÷íèÿò îòãîâîð êúì îêèñëèòåëåí
ñòðåñ å ñâúðçàí ñ ïðîìåíè â àêòèâíîñòèòå íà
àíòèîêèñëèòåëíèòå åíçèìè, ðåäîêñ-ñúñòîÿíèåòî è
êîëè÷åñòâîòî íà íååíçèìíèòå àíòèîêñèäàíòè (Cuypers
et al., 2001). Ïî ïðèíöèï â íà÷àëîòî íà ñòðåñîâèÿ
îòãîâîð ñå íàáëþäàâà èíäóêöèÿ (ïîâèøåíèå) â
àêòèâíîñòòà íà àíòèîêèñëèòåëíèòå åíçèìè, êîÿòî ìîæå
äà ñå ñâúðæå êàêòî ñ òÿõíàòà àêòèâàöèÿ, òàêà è ñ de
novo áåëòú÷åí ñèíòåç (Clijsters et al., 1999). Íàðåä ñ
ïîñî÷åíèòå åíçèìè ñå ïîâèøàâà è àêòèâíîñòòà íà
ÍÀÄ(Ô)+ ðåäóöèðàùè åíçèìè (íàïðèìåð èçîöèòðàò
äåõèäðîãåíàçà, ãëþêîçî-6-ôîñôàò äåõèäðîãåíàçà,
ìàëèê åíçèìa), êîåòî ñå îáÿñíÿâà ñ íåäîñòèã íà
ðåäóöèðàùè åêâèâàëåíòè ïðè ñòðåñîâî ñúñòîÿíèå. Ïðè
äîñòèãàíå íà îïðåäåëåíè êðèòè÷íè êîíöåíòðàöèè íà ÒÌ
â êëåòêèòå àêòèâíîñòòà íà ïîñî÷åíèòå åíçèìè ìîæå äà
áúäå èíõèáèðàíà. Kono and Fridovich (1982) óñòàíîâÿâàò
ñèëíî èíõèáèðàíå íà êàòàëàçíàòà àêòèâíîñò îò •Î2
ðàäèêàë, à Casano et al. (1997) - ôðàãìåíòèðàíå íà Cu-
Zn-SOD îò ·OH ðàäèêàë.
Èíõèáèðàíåòî íà àíòèîêèñëèòåëåíèòå åíçèìè
è íàìàëÿâàíåòî íà íååíçèìíèòå àíòèîêñèäàíòè âîäè äî
íåêîíòðîëèðóåìî íàðàñòâàíå íà ïðîäóêöèÿòà íà
ñâîáîäíè ðàäèêàëè è àêòèâíè êèñëîðîäíè âèäîâå â
êëåòêèòå. Òîâà ïðåäèçâèêâà îêèñëÿâàíå íà âàæíè
ìàêðîìîëåêóëè, â òîâà ÷èñëî è íåíàñèòåíèòå ìàñòíè
êèñåëèíè â ëèïèäíèòå êîìïîíåíòè íà ìåìáðàííèòå
ñèñòåìè, ïðè êîåòî ñå íàðóøàâà òåõíèÿò èíòåãðèòåò è
ôóíêöèîíàëíà àêòèâíîñò. Â ðåçóëòàò íà òåçè íàðóøåíèÿ
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
53
íàðàñòâà èçòè÷àíåòî íà åëåêòðîëèòè âúâ âúíøíàòà
ñðåäà. Äåãðàäàöèÿòà íà íåíàñèòåíèòå õèäðîïåðîêñèëèðàíè
ìàñòíè êèñåëèíè â ïîäëîæåíèòå íà ìåòàëåí
ñòðåñ ðàñòåíèÿ âîäè äî íàðàñòâàíå íà åìèñèèòå íà
êðàéíèòå èì ïðîäóêòè - åòàí è åòèëåí (Lidon and
Henriques, 1993; Baryla et al., 2001; Vassilev et al., 2004).
Ìóëòèïëèêàöèÿòà íà ïîñî÷åíèòå íåãàòèâíè åôåêòè íà
ÒÌ âúðõó îñíîâíèòå ôèçèîëîãè÷íè ïðîöåñè âîäè äî
ðàçëè÷íè ñòðóêòóðíî-ôóíêöèîíàëíè íàðóøåíèÿ â
ðàñòèòåëíèÿ îðãàíèçúì, îáåäèíåíè ïîä îáùîòî
íàèìåíîâàíèå ìåòàëíà ôèòîòîêñè÷íîñò.
Íà îðãàíèçìîâî íèâî èíäèêàòîðè íà ìåòàëíàòà
ôèòîòîêñè÷íîñò ñà ðàñòåæíèòå ïàðàìåòðè è âèçóàëíèòå
ïðèçíàöè íà òîêñè÷íîñò (õëîðîçè è íåêðîçè ïî ëèñòàòà,
ïîêàôåíÿâàíå íà êîðåíîâàòà ñèñòåìà è äð.). Ðàñòåæúò
å èíòåãðàëåí ôèçèîëîãè÷åí ïðîöåñ, ÷èèòî ïàðàìåòðè
(ñâåæà è ñóõà ìàñà, ëèñòíà ïëîù, âèñî÷èíà, äúëæèíà
íà êîðåíèòå è äð.) ëåñíî ìîãàò äà áúäàò èçìåðåíè.
Íÿêîè ðàñòåæíè ïàðàìåòðè, êàòî äúëæèíà íà êîðåíèòå
è îòíîñèòåëíà ñêîðîñò íà ðàñòåæà (RGR), ñà äîñòàòú÷íî
÷óâñòâèòåëíè êúì èçëèøúê íà ÒÌ (Woolhouse, 1983;
Ernst et al., 1992). Ïðè õðîíè÷íî âúçäåéñòâèå ñ ÒÌ
âèçóàëíèòå òîêñè÷íè ïðèçíàöè ìîæå äà áúäàò ïî-ìàëêî
èçÿâåíè èëè íàïúëíî äà îòñúñòâàò, íî RGR âèíàãè
íàìàëÿâà (Vangronsveld and Clijsters, 1992).
Ðåäóêòèâíèÿò àíàëèç íà ôàêòîðèòå, îãðàíè-
÷àâàùè ðàñòåæà íà òðåòèðàíè ñ ÒÌ ðàñòåíèÿ (Vassilev
and Yordanov, 1997), ïîêàçâà, ÷å íàé-÷åñòî òîâà ñà
íàðóøåíèÿòà âúâ ôîòîñèíòåòè÷íèÿ ïðîöåñ. Îáÿñíåíèåòî
íà òîçè ôàêò ñå ñâúðçâà ñ ðåäèöà íåãàòèâíè
åôåêòè íà ÒÌ âúðõó îòäåëíè çâåíà íà èíòåãðàëíèÿ
ïðîöåñ. Òåæêèòå ìåòàëè îãðàíè÷àâàò äèôóçèÿòà íà ÑÎ2
ïðåç óñòèöàòà, èíõèáèðàò õëîðîôèëíàòà áèîñèíòåçà,
íàìàëÿâàò ôîòîñèíòåòè÷íèÿ åëåêòðîíåí òðàíñïîðò è
ïîòèñêàò áèîõèìè÷íèòå ïðîöåñè îò öèêúëà íà Êàëâèí
(Krupa and Baszynski, 1995). Îò äðóãà ñòðàíà, ìíîãî
íåãàòèâíè åôåêòè íà ÒÌ âúðõó äðóãè ôèçèîëîãè÷íè
ïðîöåñè â êðàéíà ñìåòêà ðåôëåêòèðàò âúðõó
ôîòîñèíòåòè÷íèÿ ïðîöåñ (Barcelo and Poschenrieder,
1990; Van Asshe and Clijsters, 1990). Âñè÷êî òîâà ïðàâè
ôóíêöèîíàëíàòà àêòèâíîñò íà ôîòîñèíòåòè÷íèÿ àïàðàò
îáåêòèâåí èíäèêàòîð íà ïðîÿâè íà ìåòàëíà
ôèòîòîêñè÷íîñò.
Ëèñòíèÿò ãàçîâ îáìåí (ñêîðîñò íà ôîòîñèíòåçàòà,
èíòåíçèâíîñò íà òðàíñïèðàöèÿòà, óñòè÷íà
ïðîâîäèìîñò è äð.) å ïîäõîäÿù èíäèêàòîð çà
íàðóøåíèÿòà íà îðãàííî íèâî ãëàâíî ïîðàäè áúðçèíàòà
íà èçìåðâàíå â èíòàêòíè ëèñòà è âèñîêàòà
÷óâñòâèòåëíîñò. Òåæêèòå ìåòàëè íàðóøàâàò ïðîöåñèòå
íà âîäîîáìåíà, êîåòî âîäè äî ïðîìåíè â óñòè÷íàòà
ïðîâîäèìîñò (Barcelo and Poschenrieder, 1990), è
ñúîòâåòíî äî íàðàñòâàíå íà óñòè÷íîòî ëèìèòèðàíå íà
ôîòîñèíòåçàòà (Vassilev et al., 2002).  íÿêîè ñëó÷àè,
îáà÷å, òåíäåíöèÿòà å ðàçëè÷íà ïîðàäè ïðîìåíè â
äîíîðíî-àêöåïòîðíèòå îòíîøåíèÿ â ðàñòåíèÿòà.
Íàïðèìåð ïðè ñëàáà ìåòàëíà ôèòîòîêñè÷íîñò (èëè
íà÷àëî íà ìåòàëåí ñòðåñ) ðàñòåæúò íà êîðåíèòå ìîæå
äà áúäå ïîòèñíàò, áåç äà ñå ðåãèñòðèðà ñúùåñòâåíà
ïðîìÿíà â ðàñòåæà íà íàäçåìíèòå îðãàíè.  òîçè ñëó÷àé
âðåìåííèÿò èçëèøúê íà âúãëåõèäðàòè â ëèñòàòà
ïîâèøàâà îñìîòè÷íîòî íàëÿãàíå íà çàòâàðÿùèòå
êëåòêè, â ðåçóëòàò íà êîåòî óñòè÷íàòà ïðîâîäèìîñò è
èíòåíçèâíîñòòà íà òðàíñïèðàöèÿòà ñå ïîâèøàâàò
(Barcelo and Poschenrieder, 1990). Òîâà îáèêíîâåíî å
ñúïðîâîäåíî ñ ïðîìåíè â ñïåöèôè÷íàòà ïëúòíîñò íà
ëèñòàòà - ñóõàòà ìàñà â åäèíèöà ëèñòíà ïëîù (Vassilev
et al., 1998), êîåòî ìîæå äà äîâåäå äî îò÷èòàíå íà
ïîâèøåíà ñêîðîñò íà ôîòîñèíòåçàòà, ïðè ïîëîæåíèå ÷å
òÿ ñå èçðàçÿâà íà åäèíèöà ëèñòíà ïëîù (Merakchijska
and Yordanov, 1983; Landberg and Greger, 1994). Â
ïðåîáëàäàâàùèÿ áðîé ñëó÷àè, îáà÷å, ñêîðîñòòà íà
ôîòîñèíòåçàòà íàìàëÿâà ïîðàäè ñúâìåñòíîòî
íåãàòèâíî âëèÿíèå íà óñòè÷íè è ìåçîôèëíè ôàêòîðè.
Ôîòîñèíòåòè÷íèòå ïèãìåíòè ñå ñ÷èòàò çà
÷óâñòâèòåëíî çâåíî íà òîêñè÷íèòå ìåòàëíè åôåêòè
(Krupa and Baszynski, 1995) ãëàâíî ïîðàäè õàðàêòåðíèòå
ïðîÿâè íà õëîðîçà â èçïèòâàùèòå ìåòàëåí ñòðåñ
ðàñòåíèÿ. Îò äðóãà ñòðàíà, òå ÷åñòî ñà âêëþ÷âàíè â
ðàçëè÷íè ôèòîòîêñè÷íè òåñòîâå ïîðàäè ñðàâíèòåëíî
ëåñíîòî èì îïðåäåëÿíå (Lewis, 1995). Ñúâðåìåííèòå
ïðåäñòàâè çà íåãàòèâíîòî âëèÿíèå íà ÒÌ âúðõó
ôîòîñèíòåòè÷íèòå ïèãìåíòè ñå ñâúðçâàò ñ: èíõèáèðàíå
íà òÿõíàòà áèîñèíòåçà (Stobart et al., 1985); èíäóöèðàíå
íà Fe è Mg äåôèöèò (Greger and Limberg, 1987);
çàìåñòâàíå íà Mg â õëîðîôèëíàòà ìîëåêóëà ñ éîí íà
ÒÌ (Küpper et al., 1998); îêèñëèòåëíî ðàçãðàæäàíå
(Somashekaraiah et al., 1992; Lidon and Henriques,
1992a), êàêòî è íàìàëÿâàíå íà ñðåäíèÿ áðîé íà
õëîðîïëàñòèòå â êëåòêàòà (Baryla et al., 2001).
Îñíîâíèòå ìåçîôèëíè ëèìèòàöèè íà
ôîòîñèíòåçàòà â òðåòèðàíè ñ ÒÌ ðàñòåíèÿ ñà ñâúðçàíè
ñ áèîõèìè÷íèòå ïðîöåñè îò öèêúëà íà Êàëâèí è
ôîòîñèíòåòè÷íèÿ åëåêòðîíåí òðàíñïîðò. Èçâåñòíî å, ÷å
ÒÌ ìîãàò äà èíõèáèðàò èëè íàïúëíî äà èíàêòèâèðàò
àêòèâíîñòòà íà îñíîâíèÿ ôîòîñèíòåòè÷åí åíçèì
ðèáóëîçîáèñôîñôàò êàðáîêñèëàçà/îêñèãåíàçà (Rubisco)
(Stiborova et al., 1988; Kamenova-Jouhimenko et al., 1997/
98) è äà ïðåäèçâèêâàò ðåäèöà íàðóøåíèÿ â åëåêòðîííîòðàíñïîðòíèòå
ïðîöåñè, ñâúðçàíè ñ ÔÑ2 è ÔÑ1
(Tukendorf and Baszynski, 1991; Vassilev et al., 2003).
Íàðóøåíèÿòà âúâ ôîòîñèíòåòè÷íèÿ åëåêòðîíåí
òðàíñïîðò ñå äúëæàò íà óëòðàñòðóêòóðíè íàðóøåíèÿ â
òèëàêîèäèòå (Baszynski, 1986; Stoyanova and
Merakchiyska-Nikolova, 1991), íà íàìàëÿâàíå íà íèâàòà
íà åëåêòðîííèòå ïðåíîñèòåëè (Lidon and Henriques,
1992b), íà èíõèáèðàíå íà ôîòîàêòèâàöèÿòà íà ÔÑ2
(Faller et al., 2005) è ðåäèöà äðóãè íåãàòèâíè åôåêòè íà
ÒÌ.

Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
55
ïðè÷èíè: (a) èìà îòíîñèòåëíî áúðçà ñêîðîñò íà
ïîíèêâàíå è ðàñòåæ, êîåòî íàìàëÿâà ïðîäúëæèòåëíîñòòà
íà òåñòà; (b) èìà âèñîêà òðàíñïèðàöèÿ, êîÿòî
âîäè äî ïî-çíà÷èòåëåí òðàíñïîðò íà ÒÌ êúì íàäçåìíèòå
îðãàíè è ñúîòâåòíî äî ïî-ñèëíî èíõèáèðàíå íà
ôîòîñèíòåòè÷íèòå ïàðàìåòðè; (c) èìà îòíîñèòåëíî
ìàëúê ìèêñîòðîôåí ïåðèîä íà õðàíåíå, êîåòî ñúçäàâà
âúçìîæíîñò çà ïî-ðàííà äèàãíîñòèêà íà åôåêòà íà
ìåòàëíèÿ ñòðåñ.
Ðàñòèòåëíèòå òåñòîâå êëàñèôèöèðàò ôèòîòîêñè
÷íîñòòà íà ñóáñòðàòà â ðàçëè÷íè ãðóïè (êëàñîâå). Â
òåñòà íà Vangronsveld and Clijsters (1992) ñå èçïîëçâàò
ñëåäíèòå ôèòîòîêñè÷íè êëàñîâå: íåòîêñè÷íà (I êëàñ),
ñëàáî òîêñè÷íà (II êëàñ), óìåðåíî òîêñè÷íà (III êëàñ) è
ñèëíî òîêñè÷íà (IV êëàñ). Çà îïðåäåëÿíå íà
êîëè÷åñòâåíèòå ïàðàìåòðè íà ïîäáðàíèòå èíäèêàòîðè
â íîâèÿ òåñò ñ êðàñòàâè÷íè ðàñòåíèÿ áÿõà ïðîâåäåíè
äîïúëíèòåëíè îïèòè ñ íàðàñòâàùè êîíöåíòðàöèè íà ÒÌ
â ñðåäàòà (Âàñèëåâ è ñúàâò., 2009). Â ðåçóëòàò íà òåçè
îïèòè áÿõà íîðìèðàíè 5 ôèòîòîêñè÷íè êëàñà, êàòî â
äîïúëíåíèå êúì ïîñî÷åíèòå áåøå âêëþ÷åí è V êëàñ –
ëåòàëíà ïî÷âà èëè ñóáñòðàò (òàáëèöà 1).
Çà äà ïðîâåðèì ÷óâñòâèòåëíîñòòà íà
ðàçðàáîòåíèÿ òåñò, áÿõà ïðîâåäåíè ñðàâíèòåëíè
èçñëåäâàíèÿ íà íîâèÿ òåñò ñ òåñòà íà Vangronsveld and
Clijsters (1992) (Âàñèëåâ è Íèêîëîâà, 2010). Óñòàíîâåíî
Òàáëèöà 1. Ñòîéíîñòè íà èíäèêàòîðèòå â òåñòà ñ êðàñòàâè÷íè ðàñòåíèÿ çà îòäåëíèòå ôèòîòîêñè÷íè êëàñîâå
(â % îò êîíòðîëàòà)
Table 1. Values of indicators in the test with cucumber plants for the different phytotoxicity classes
(in % from the control)
Параметри/
Parameters
Фитотоксични класове / Phytotoxicity classes
Нетоксична
Клас I
Nontoxic,
Class I
Слабо
токсична
Клас II
Slightly toxic,
Class II
Умерено
токсична
Клас III
Moderately
toxic, Class III
Силно
токсична
Клас IV
Strongly
toxic, Class
IV
Летална
Клас V
Lethal,
Class V
Свежа маса/
Листна площ
Fresh mass/
Leaf area
> 90
85-75
75-40
< 40
Няма
поникване
No
germination
Скорост на ФС/
Net
photosynthetic
rate
95-110 >70 70-40 < 40 -
ETR 95-105 >80 80-50 < 50 -
GPOD корени/
GPOD roots
100-125 125-150 150-200 > 200 -
áåøå, ÷å òåñòúò ñ êðàñòàâè÷íè ðàñòåíèÿ èìà ïî-âèñîêà
÷óâñòâèòåëíîñò êúì ìåòàëíà òîêñè÷íîñò â ñðàâíåíèå ñ
òåñòà ñ ôàñóëåâè ðàñòåíèÿ, òúé êàòî èäåíòèôèöèðà ïîâèñîêà
òîêñè÷íîñò íà àíàëèçèðàíèòå ñóáñòðàòè. Â
äîïúëíåíèå ñèëíî íåãîâî ïðåäèìñòâî å áúðçèíàòà íà
èçìåðâàíå íà íåäåñòðóêòèâíèòå ôîòîñèíòåòè÷íè
ïàðàìåòðè.
Åêîòîêñèêîëîãè÷íà îöåíêà íà çàìúðñåíè ñ òåæêè
ìåòàëè ïî÷âè
Ðàçðàáîòåíèÿò íîâ òåñò áåøå ïðèëîæåí çà
îöåíêà íà ôèòîòîêñè÷íîñòòà íà çàìúðñåíè ñ ÒÌ ïî÷âè
â ðàéîíà íà ìåäîäîáèâíîòî ïðåäïðèÿòèå Êóìåðèî êðàé
ãð. Çëàòèöà. Ïîäáîðúò íà ïðîáèòå áåøå èçâúðøåí íà
áàçàòà íà äàííè çà îáùîòî ñúäúðæàíèå íà ÒÌ â ïî÷âàòà
è ðåàêöèÿòà íà ñðåäàòà îò ìîíèòîðèíãîâè ìðåæè,
èçïîëçâàíè â èçñëåäîâàòåëñêàòà ðàáîòà íà ä-ð Íèêîëàé
Äèíåâ (òàáëèöà 2). Çà êîíòðîëè áÿõà èçïîëçâàíè
ïî÷âåíè ïðîáè, âçåòè îò íàé-äàëå÷íà äèñòàíöèÿ îò
çàìúðñåíèÿ ðàéîí ñúñ ñúäúðæàíèå íà ÒÌ ïîä
óñòàíîâåíèòå ó íàñ ÏÄÊ. Çà èçðàâíÿâàíå íà åâåíòóàëíè
ðàçëèêè â ìèíåðàëíèÿ ôîí âñè÷êè ïî÷âåíè ïðîáè âúâ
âñåêè îïèò áÿõà ïîëåòè äâóêðàòíî ñ åäíàêúâ îáåì
õðàíèòåëåí ðàçòâîð íà Õîãëàíä.
Äàííèòå îò òàáëèöà 2 ïîòâúðäèõà, ÷å ñ ìàëêè
èçêëþ÷åíèÿ îñíîâíîòî ïî÷âåíî çàìúðñÿâàíå å îò
56
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Òàáëèöà 2. Îáùî ñúäúðæàíèå íà òåæêè ìåòàëè (mg/kg) è ðåàêöèÿ íà ñðåäàòà â ïîäáðàíè ïî÷âåíè ïðîáè îò
ðàéîíà îêîëî Çëàòèöà
Table 2. Total content of heavy metals (mg/kg) and soil reaction in selected soil samples, taken in the region around
Zlatitsa
Варианти pH Cd Cu Pb Zn
Variants
1 5.2 <1.0 1900 67 87
2 5.5 <1.0 2087 26 109
3 7.3 <1.0 710 144 178
4 5.7 <1.0 112 150 212
5 6.5 <1.0 59 28 57
6 6.4 <1.0 67 48 87
Òàáëèöà 3. Ñòîéíîñòè íà èíäèêàòîðèòå â êðàñòàâè÷íè ðàñòåíèÿ, îòãëåæäàíè âúðõó çàìúðñåíè ñ òåæêè ìåòàëè
ïî÷âåíè ïðîáè îò ðàéîíà íà Çëàòèöà. Ñâåæà ìàñà íà ðàñòåíèÿòà (g); ëèñòíà ïëîù (cm2); ñêîðîñò íà íåòî
ôîòîñèíòåçàòà (μmol CO2 m-2s-1); ETR (ñêîðîñò íà ôîòîñèíòåòè÷íèÿ åëåêòðîíåí òðàíñïîðò - μmol m-2 s-1); ãâàÿêîëïåðîêñèäàçíà
àêòèâíîñò (GPOD - mU g-1 ñâåæà ìàñà)
Table 3. Values of indicators in cucumeber plants grown in heavy metal contaminated soil samples from Zlatisa region.
Fresh mass of plant (g); Leaf area (cm2); Net photosynthetic rate (μmol CO2 m-2s-1); ETR – apparent photosynthetic
transport rate (μmol m-2s-1); Guijacol peroxidase activity in roots (GPOD – mU g-1 FW)
Параметри
Parameters
Варианти
Вариант 1
Treatment 1
Вариант 2
Treatment 2
Вариант 3
Treatment 3
Вариант 4
Treatment 4
Вариант 5
Treatment 5
Вариант 6
(контрола)
Treatment 6
(control)
Свежа маса
Fresh mass
No
germination
2.15* 4.45 5.07 5.12 4.90
Листна площ
Leaf area
- 38.3* 68.2* 87.8 91.5 86.9
Скорост на ФС
Photosyntetic rate
- 3.12* 9.15* 10.35 12.11 11.23
ETR - 12.7* 23.1* 26.1 29.5 28.5
GPOD корени
GPOD roots
- 4560* 3215* 2615 2570 2410
Фитотоксичен клас
Phytotoxicity class
V IV II I I I
*Ðàçëèêèòå ñ êîíòðîëàòà ñà äîêàçàíè ïðè P = 0.05
*Significant differences with control at P = 0.05
Ñíèìêà 3. Îáù âèä íà îïèòèòå ñ ïî÷âåíè
ïðîáè îò ðàéîíà íà Çëàòèöà
Picture 3. General view of the experiments with
soil samples from Zlatitsa region
òåæêèÿ ìåòàë Cu. Ïðè ñòîéíîñò íà ÏÄÊ îò 80 mg/kg
ïî÷âà (ïðè pH<6,0) âàðèàíòèòå 1 è 2 èìàò ñúäúðæàíèå
íà Cu ñúîòâåòíî 1700 è 2087. Ïðîáèòå îò îïîðíè òî÷êè
â ñúñåäñòâî ñ ïúòèùà èìàò è ñèëíî çàâèøåíè ñòîéíîñòè
íà Pb. Äî 5 êì èçòî÷íî îò ïðåäïðèÿòèåòî Êóìåðèî
(âàðèàíò 3) ñòîéíîñòèòå íà Cu ñà íàä óñòàíîâåíèòå ÏÄÊ.
Îáùèÿò âèä íà ðàñòåíèÿòà îò ïðîâåäåíèòå
îïèòè å ïðåäñòàâåí íà ñíèìêè 3, à ðåçóëòàòèòå ñà
îòðàçåíè â òàáëèöà 3.  ïî÷âåíàòà ïðîáà îò âàðèàíò 1
ðàñòåíèÿòà íå ïîíèêíàõà, à òåçè îò âàðèàíò 2 ñå
îòëè÷àâàõà ñúñ ñèëíî èíõèáèðàí ðàñòåæ. Î÷åâèäíî
âèñîêàòà ôèòîòîêñè÷íîñò ñå äúëæè íà òåæêèÿ ìåòàë Cu,
êîéòî ïîðàäè ðåäîêñàêòèâíèÿ ñè õàðàêòåð å ñèëíî
òîêñè÷åí. Ëåòàëíàòà ôèòîòîêñè÷íîñò âúâ âàðèàíò 1 ïðè
ïî-íèñêî îáùî ñúäúðæàíèå íà Cu â ñðàâíåíèå ñ òàçè
îò âàðèàíò 2 ìîæå äà ñå îáÿñíè ñ ïî-êèñåëàòà ðåàêöèÿ,
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
57
ïðè êîÿòî äîñòúïíèòå êîëè÷åñòâà íà òåæêèÿ ìåòàë ìîãàò
äà áúäàò ïî-çíà÷èòåëíè. Ïî÷âàòà îò âàðèàíò 3 áåøå
õàðàêòåðèçèðàíà êàòî ñëàáî òîêñè÷íà. Îñòàíàëèòå
ïðîáè (âàðèàíò 4 è 5) íå ïîêàçàõà ôèòîòîêñè÷íè ïðîÿâè.
Ïîëó÷åíèòå ðåçóëòàòè äàäîõà îñíîâàíèå äà ñå çàêëþ÷è,
÷å ðàçðàáîòåíèÿò òåñò ïîêàçâà âèñîêà ÷óâñòâèòåëíîñò
êúì ìåòàëíà ôèòîòîêñè÷íîñò è ìîæå äà áúäå
ïðåïîðú÷àí çà èçïîëçâàíå çà ïðàêòè÷åñêè öåëè.
ËÈÒÅÐÀÒÓÐÀ
Âàñèëåâ, À., Ì. Áåðîâà, Í. Ñòîåâà, Ç. Çëàòåâ, 2009.
Ðàçðàáîòâàíå è ïèëîòíî èçïèòâàíå íà ðàñòèòåëåí
òåñò çà îöåíêà íà òîêñè÷íîñòòà íà çàìúðñåíè ñ òåæêè
ìåòàëè ïî÷âè. – Àãðàðíè íàóêè, 1 :45-52.
Íèêîëîâà, À., À. Âàñèëåâ, 2009. Ñòðóêòóðíîôóíêöèîíàëíè
ïðîìåíè â ëèñòàòà íà Lactuca sativa
L. è Phaseolus vulgare L. ïðè íàðàñòâàíå íà íèâàòà
íà òåæêè ìåòàëè â êîðåíîâàòà ñðåäà. – Àãðàðíè
íàóêè, 1:33-39.
Âàñèëåâ, À., À. Íèêîëîâà, 2010. Ñðàâíèòåëíî
èçñëåäâàíå âúðõó ÷óâñòâèòåëíîñòòà íà äâà
ðàñòèòåëíè òåñòà çà îöåíêà íà ìåòàëíà
ôèòîòîêñè÷íîñò. – Àãðàðíè íàóêè, 3: 27-32.
Êîëåâà, Ë., À. Íèêîëîâà, À. Âàñèëåâ, 2006.
Ôèçèîëîãè÷íà ðåàêöèÿ íà êðàñòàâèöè (Cucumis
sativus) êúì íàðàñòâàùè íèâà íà òåæêè ìåòàëè â
ñðåäàòà. – Íàó÷íè òðóäîâå íà Àãðàðíèÿ óíèâåðñèòåò,
ò. LI, 9-12.
Íèêîëîâà, À., Ë. Êîëåâà, À. Âàñèëåâ, 2006. Ñòðóêòóðíîôóíêöèîíàëíî
èçñëåäâàíå íà ôîòîñèíòåòè÷íèÿ
àïàðàò íà êðàñòàâè÷íè ðàñòåíèÿ (Cucumis sativus) â
óñëîâèÿ íà èçëèøúê îò òåæêè ìåòàëè. – Íàó÷íè
òðóäîâå íà Àãðàðíèÿ óíèâåðñèòåò, ò. LI, 13-16.
An, Y.J., 2004. Soil ecotoxicity assessment using cadmium
sensitive plants. – Environmental Pollution, 127: 21-26.
Adriano, D. C., 2001. Trace elements in terrestrial
environments. Biogeochemistry, Bioavailability, and
Risks of Metals. 2nd edition. Springer-Veriag., New York,
Berlin, Heidelberg.
Barcelo, J., Ch. Poschenrieder, 1990. Plant water relations
as affected by heavy metal stress: a review. – J. Plant
Nutrition, 13 (1): 1-37.
Baryla, A., P. Carrier, F. Franck, C. Coulomb, C. Sahut, M.
Havaux, 2001. Leaf chlorosis in oilseed rape plants
(Brassica napus) grown on cadmium-polluted soil:
causes and consequences for photosynthesis and
growth. – Planta, 212: 696-709.
Baszynski, T., 1986. Interference of Cd2+ in functioning of
the photosynthetic apparatus of higher plants. – Acta
Soc. Bot. Pol., 55: 291-304.
Casano, L.M., L.D. Gomez, H.R. Lascano, C.A. Gonzales,
V.S. Trippi, 1997. Inactivation and degradation of CuZn-
SOD by active oxygen species in wheat chloroplasts
exposed to photo-oxidative stress. – Plant Cell Physiol.,
38:433-440.
Clijsters, H. A. Cuypers, J. Vangronsveld, 1999.
Physiological responses to heavy metals in higher
plants; Defence against oxidative stress. – Z.
Naturforsch., 54: 730-734.
Cuypers, A., J. Vangronsveld, H. Clijsters, 2001. The redox
status of plant cells (AsA and GSH) is sensitive to zinc
imposed oxidative stress in roots and primary leaves of
Phaseolus vulgaris. – Plant Physiol. Biochem., 39: 657-
664.
Faller, P., K. Kienzler, A. Krieger-Liszkay, 2005. Mechanism
of Cd2+ toxicity: Cd2+ inhibits photoactivation of
Photosystem II by competative binding to the essential
Ca2+ site. – Biochim. et Biophys. Acta, 1706:158-164.
Greger, M., Lindberg, S., 1987. Effects of Cd2+ and EDTA
on young sugar beets (Beta vulgaris). II. Net uptake
and distribution of Mg2+, Ca2+ and Fe2+/Fe3+. – Physiol.
Plant. 68: 81-86.
Hock, B., E. Elstner, 2005. Preface. – In: Plant Toxicology
(Hock, B., E. Elstner, Eds.) Fourth Edition. Marcel
Dekker, New York.
Kamenova-Jouhimenko, S. M., Y. K. Markovska, V. T.
Georgieva, 1997/1998. Effects of biomin and algae
suspensions on the activities of carboxylating and
decarboxylating enzymes in cadmium-treated pea
plants. – Biol. Plant., 40 (3): 405-410.
Kono, Y., I. Fridovich, 1982. Superoxide radical inhibits
catalase. – J. Biol. Chem., 257: 5751-5754.
Krupa, Z., T. Baszynski, 1995. Some aspects of heavy
metals toxicity towards photosynthetic apparatus - direct
and indirect effects on light and dark reactions. – Acta
Physiol. Plant., 7: 55-64.
Küpper, H., F. Küpper, M. Spiller, 1998. In situ detection of
heavy metal substituted chlorophylls in water plants. –
Photosynth. Res. 58: 123-133.
Landberg, T., M. Greger, 1994. Influence of selenium on
uptake and toxicity of cooper and cadmium in pea
(Pisum sativum) and wheat (Triticum sativum). –
Physiol. Plantarum, 90: 637-644.
Lewis, M., 1995. Use of freshwater plants for phytotoxicity
testing: a review. – Environm. Poll., 87: 319-336.
Lidon, F., F. S. Henriques, 1992a. Effects of excess copper
on the photosynthetic pigments in rice plants. – Bot.
Bull. Academia Sinica, 33: 141-149.
Lidon, F., F. S. Henriques, 1992b. Changes in the contents
of photosynthetic electron carriers, RNAse activity and
membrane permeability in copper-treated rice plants. –
Photosynthetica, 26: 371-380.
Lidon, F., F. S. Henriques, 1993. Oxygen metabolism in
higher plant chloroplasts. – Photosynthetica, 29: 249-
279.
McGrath, S. P., 1987. Long-term studies of metals transfers
following applications of sewage sludge. – In: Pollutant
58
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Transport and fate in Ecosystems. Special publication
N 6 of the British Ecological Society. P. Coughtrey, M.
Martin, M. Unsworth (Eds). Blackwell Scientific, Oxford,
301-317.
Merakchiiska, M., I. Yordanov, 1983. The effect of some
heavy metals upon growth, pigment content and
photsynthetic activity of bean plants. – In: III National
Conference of Botany, Sofia, Bulg. Acad. Sci., pp. 848-
853.
Milone, M. T., C. Sgherri, H. Clijsters, F. Navari-Izzo, 2003.
Antioxidative responses of wheat treated with realistic
concentration of cadmium. – Environ. Exp. Bot., 50:
265-276.
Noctor, G., C. Foyer, 1998. Ascorbate and glutathione:
keeping active oxygen under control. – Annu. Rev. Plant
Physiol. Plant Mol. Biol., 49:249-279.
OECD, 1984. Guideline for testing chemicals. No 207.
Earthworm, acute toxicity tests. Organisation for
Economic Cooperation and Development, Paris.
Somashekaraiah, B., K. Padmaja, A. Prasad, 1992.
Phytotoxicity of cadmium ions on germinating seedlings
of mung beans (Phaseolus vulgaris): Involvement of lipid
peroxides in chlorophyll degradation. – Physiol. Plant,
85: 85-89.
Stiborova, M., Doubravova, M., Bresinova, A., 1988.
Mechanism of action of Cu, Cd and Zn on ribuloze 1,5-
biphosphate carboxylase from barley (H. vulgare L.). –
Photosynthetica, 22: 161-167.
Stobart, A., W. Griffiths, I. Ameen-Bukhari, R. Sherwood,
1985. The effect of Cd2+ on the biosynthesis of
chlorophyll in leaves of barley. – Physiol. Plant., 63:
293-298.
Stoyanova, E., M. Merakchiyska-Nikolova, 1991.
Ultrastructure of the formating photosynthetic apparatus
of bean (Phaseolus vulgaris L.) under the action of
CuSO4 and kinetin. – Compt. Rend. Bulb. Acad. Sci.,
44 (12): 93-96.
Tukendorf, A., T. Baszynski, 1991. The in vivo effect of
cadmium on photochemical activities in chloroplasts of
runner bean plants. Acta Physiol. Plantarum, 13 (1),
51-57.
Van Asshe, F., H. Clijsters, 1990. Effects of metals on
enzyme activity in plants. – Plant, Cell and Environ.,
13:195-206.
Vangronsveld, J., H. Clijsters, 1992. A biological test system
for the evaluation of metal phytotoxicity and
immobilisation by additives in metal contaminated soils.
– In: Metal compounds in environment and life, 4.
Special supplement to Chemical Speciation and
Bioavailability. (Eds. E. Merian, W. Haedi), Wilmington:
Science Reviews Inc., 1992, pp. 117-125.
Vassilev, A., F. C. Lidon, J. C. Ramalho, M. do Céu Matos,
M. da Graca, 2003. Effects of excess Cu on growth
and photosynthesis of barley plants. Implication with a
screening test for Cu tolerance. – J. Central European
Agriculture, 4 (3): 227-235.
Vassilev, A., F. Lidon, P. Scotti, M. da Graca, I. Yordanov,
2004. Cadmium-induced changes in chloroplast lipids
and photosystem activities of barley plants. – Biol. Plant.,
48 (1): 153-156.
Vassilev, A., Fernando C. Lidon, Maria do Céu Matos, José
C. Ramalho, Ivan Yordanov, 2002. Photosynthetic
Performance and Some Nutrients Content in Cd and
Cu-treated Barley (Hordeum vulgare L.) plants. – J.
Plant Nutr., 25 (11): 2343-2360.
Vassilev, A., I. Yordanov, 1997. Reductive analysis of factors
limiting growth of Cd-treated plants: a review. – Bulg. J.
Plant Physiol., 23 (3-4): 114-133.
Vassilev, A., L. Koleva, M. Berova, N. Stoeva, 2007.
Development of a plant test system for metal toxicity
evaluation. I. Sensitivity of plant species to heavy metal
stress. – J. Central European Agriculture, 8 (2): 135-
140.
Vassilev, A., M. Berova, Z. Zlatev, 1998. Influence of Cd2+
on growth, chlorophyll content, and water relations in
young barley plants. – Biol. Plant., 41 (4): 601-606.
Vassilev, A., P. Manolov, 1999. Chlorophyll fluorescence of
barley (H. vulgare L.) seedlings grown in excess of Cd.
– Bulg. J. Plant Physiol., 25 (3-4): 67-76.
White, A. J., Ch. Critchley, 1999. Rapid light curves: a new
fluorescence method to assess the state of the
photosynthetic apparatus. – Photosynthesis Research,
59: 63-72.
Woolhouse, H.W., 1983. Toxicity and tolerance in the
responses of plants to metals. – In: O. L. Lange, P.S.
Nobel, C.B. Osmond, H. Ziegler (Eds.) Physiological
plant ecology II. Responses to the chemical and
biological environment. Encyclopedia of plant
physiology. New Series 12C, Springer, Berlin,
Heidelberg, New York, pp. 245-300.
Àâòîðèòå èçêàçâàò áëàãîäàðíîñò íà Ôîíä “Íàó÷íè
èçñëåäâàíèÿ” çà ïðåäîñòàâåíîòî ôèíàíñèðàíå íà
ïðîåêò ÄÎ 02-88/2008.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Âàñèëèé Ãîëöåâ
E-mail: goltsev@biofac.uni-sofia.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
59
ÒÎËÅÐÀÍÒÍÎÑÒ ÍÀ ÐÀÑÒÅÍÈßÒÀ ÊÚÌ ÇÀÑÓØÀÂÀÍÅ È ÂÈÑÎÊÈ ÒÅÌÏÅÐÀÒÓÐÈ – ÔÈÇÈÎËÎÃÈ×ÍÈ
ÌÅÕÀÍÈÇÌÈ È ÏÎÄÕÎÄÈ ÇÀ ÏÎÄÁÎÐ ÍÀ ÒÎËÅÐÀÍÒÍÈ ÃÅÍÎÒÈÏÎÂÅ
PLANT TOLERANCE TO DROUGHT AND HIGH TEMPERATURES: PHYSIOLOGICAL MECHANISMS AND
APPROACHES FOR SCREENING FOR TOLERANT GENOTYPES
Àíäîí Âàñèëåâ*, Çëàòêî Çëàòåâ, Ìàëãîæàòà Áåðîâà, Íåâåíà Ñòîåâà
Andon Vassilev*, Zlatko Zlatev, Malgozata Berova, Nevena Stoeva
Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ
Agricultural University of Plovdiv
*E-mail: vassilev@au-plovdiv.bg
Ðåçþìå
Çàñóøàâàíåòî è âèñîêèòå òåìïåðàòóðè ñà ñðåä îñíîâíèòå ôàêòîðè, ëèìèòèðàùè ïðîäóêòèâíîñòòà íà
ñåëñêîñòîïàíñêèòå êóëòóðè â Áúëãàðèÿ, ïîðàäè êîåòî ïîäáîðúò è öåëåíàñî÷åíîòî ñúçäàâàíå íà òîëåðàíòíè ñîðòîâå
ñà êëþ÷îâè ïîäõîäè è ôàêòîðè çà óñòîé÷èâîòî çåìåäåëèå.  íàñòîÿùèÿ îáçîð íàêðàòêî ñà îïèñàíè ôèçèîëîãè÷íèòå
ìåõàíèçìè, ñ ïîìîùòà íà êîèòî ðàñòåíèÿòà ñå ïðèñïîñîáÿâàò êúì ïîñî÷åíèòå ñòðåñîâè ôàêòîðè, êàêòî è ïîäõîäèòå
çà ïîäáîð íà òîëåðàíòíè ãåíîòèïîâå. Ïîêàçàíî å ïîäõîäÿùî íàó÷íî îáîðóäâàíå çà ñêðèíèíãîâè èçñëåäâàíèÿ.
Abstract
Both drought and high temperatures are among the main factors limiting crop productivity in Bulgaria, therefore
screening and selection of tolerant genotypes is a key approach for sustainable agriculture. In the present review-paper the
physiological mechanisms used by plants to cope with the shown stress factors are described briefly as well as approaches
for screening for tolerant genotypes. Suitable scientific equipment for screening investigations is also indicated.
Êëþ÷îâè äóìè: çàñóøàâàíå, âèñîêè òåìïåðàòóðè, ñòðåñ, òîëåðàíòíîñò, ìåõàíèçìè, íàó÷íî îáîðóäâàíå.
Key words: drought, high temperatures, stress, tolerance, mechanisms, scientific equipment.
ÓÂÎÄ
Ïðîáëåìúò çà ñòðåñà ïðè ðàñòåíèÿòà å
öåíòðàëåí ïðîáëåì â ðàñòèòåëíàòà ôèçèîëîãèÿ. Ñëåä
ôóíäàìåíòàëíèòå äîñòèæåíèÿ âúâ ôèçèîëîãèÿòà íà
ðàñòåíèÿòà ïðåç ìèíàëèÿ âåê äíåñ íàó÷íèòå
èçñëåäâàíèÿ ñà íàñî÷åíè ïðåäèìíî êúì ðàçêðèâàíå íà
ìåõàíèçìèòå çà àêëèìàòèçàöèÿ è àäàïòàöèÿ íà
ðàñòåíèÿòà êúì ðàçëè÷íè íåáëàãîïðèÿòíè óñëîâèÿ íà
îêîëíàòà ñðåäà (Munns, 2002; Iba, 2002; Ohashi et al.,
2009). Àêòóàëíîñòòà íà òàçè ïðîáëåìàòèêà â çíà÷èòåëíà
ñòåïåí å ìîòèâèðàíà îò íàñòúïâàùèòå ïðîìåíè â
êëèìàòà, êîèòî êàòî öÿëî âëèÿÿò íåãàòèâíî íà
ðàñòåíèÿòà, â òîâà ÷èñëî è íà ñåëñêîñòîïàíñêèòå
êóëòóðè.
Ñðåä íàé-õàðàêòåðíèòå çà íàøàòà ñòðàíà
ñòðåñîâè ôàêòîðè ñà çàñóøàâàíåòî è âèñîêèòå
òåìïåðàòóðè. Â ðåçóëòàò íà äåéñòâèåòî íà òåçè ñòðåñîâè
ôàêòîðè ñå ïîíèæàâà ãåíåòè÷íî çàëîæåíèÿò
ïðîäóêòèâåí ïîòåíöèàë íà ñåëñêîñòîïàíñêèòå êóëòóðè
è ñå âëîøàâà êà÷åñòâîòî íà ïðîäóêöèÿòà. Ïðåç 2007 ã. â
ðåçóëòàò íà çàñóøàâàíå â ðåäèöà ðàéîíè íà ñòðàíàòà
íàïúëíî áåøå êîìïðîìåòèðàíà ðåêîëòàòà îò öàðåâèöà
è äðóãè ïðîëåòíè êóëòóðè.
Ìåõàíèçìèòå, êîèòî îáåçïå÷àâàò òîëåðàíòíîñòòà
íà ðàñòåíèÿòà êúì ñòðåñîâè ôàêòîðè,
íåçàâèñèìî îò òîâà äàëè ñà ãåíåòè÷íî çàêðåïåíè
(àäàïòàöèîííè) èëè ñå ôîðìèðàò ïðåç æèçíåíàòà
äåéíîñò (àêëèìàòèçàöèîííè), ìîæå äà ñå äèôåðåíöèðàò
â 2 ãðóïè: (1) èçáÿãâàíå íà ñòðåñà è (2) ñúïðîòèâëåíèå.
Íàé-îáùî ïðè èçáÿãâàíå íà ñòðåñà ðàñòåíèÿòà
ðàçïîëàãàò òàêà âåãåòàöèîííèÿ ñè öèêúë, ÷å êðèòè÷íèòå
ôàçè îò ðàñòåæà è ðàçâèòèåòî èì äà íå ñúâïàäíàò ñ
íåáëàãîïðèÿòíè âúçäåéñòâèÿ èëè ôîðìèðàò ìåõàíèçìè
è ñòðóêòóðè, êîèòî áóôåðèðàò ñòðåñîâèòå âúçäåéñòâèÿ.
Ñúïðîòèâëåíèåòî íà îðãàíèçìèòå å ñúâúðøåíî äðóã òèï
ðåàêöèÿ (ñòðàòåãèÿ) íà ðàñòåíèÿòà êúì ñòðåñîâè
ôàêòîðè. Ïðè íåÿ ðàñòåíèÿòà èçäúðæàò äåéñòâèåòî íà
ñòðåñîâèÿ ôàêòîð ÷ðåç ðåäèöà ìåõàíèçìè, êîèòî ìîãàò
60
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
äà áúäàò îáùè, êîãàòî ïîäïîìàãàò ðàñòåíèÿòà ïðè
âúçäåéñòâèÿ íà ðàçëè÷íè ñòðåñîâè ôàêòîðè, è
ñïåöèôè÷íè, êîãàòî ïðîòèâîäåéñòâàò íà åäèí êîíêðåòåí
ôàêòîð.
Ìîëåêóëÿðíèòå ìåõàíèçìè, îáåçïå÷àâàùè
ïîâèøåíà òîëåðàíòíîñò íà ðàñòåíèÿòà êúì îñíîâíèòå
ñòðåñîâè ôàêòîðè, ñà àêòóàëåí ïðîáëåì â ñúâðåìåííàòà
ôèçèîëîãè÷íà íàóêà (Bruce et al., 2002; Suzuki and Mittler,
2006; Wahid et al., 2007). Çíà÷èòåëíà ÷àñò îò òåçè
èçñëåäâàíèÿ ñà íàñî÷åíè êúì ðàçêðèâàíå íà
ìåõàíèçìèòå íà (1) ðåöåïöèÿ íà ñèãíàëíèÿ ôàêòîð, (2)
íåãîâîòî ïðåäàâàíå è (3) èíäóöèðàíåòî íà ïðîìåíè â
ãåííàòà åêñïðåñèÿ. Óñòàíîâåíî å, ÷å â ðåãóëèðàíåòî íà
ôèçèîëîãè÷íèòå îòãîâîðè ñà âúâëå÷åíè ðåäèöà
ôèòîõîðìîíè, êàòî àáñöèñèíîâà êèñåëèíà (ÀBA),
åòèëåí, æàñìîíîâà êèñåëèíà è äð., êàêòî è ÷å â îòãîâîð
íà ñòðåñà ñå íàáëþäàâà çàñèëåíà åêñïðåñèÿ íà åäíè
ãåíè è ïîíèæåíà íà äðóãè, ñèíòåçèðàíå íà íîâè áåëòúöè,
èçìåíåíèå íà àêòèâíîñòòà íà âå÷å ñèíòåçèðàíè áåëòúöè
è äð. Ìîëåêóëÿðíèòå ìåõàíèçìè, êîíòðîëèðàùè òåçè
ïðîöåñè, íå ñà íàïúëíî èçÿñíåíè, íî å ÿñíî, ÷å òå
äåéñòâàò íà ðàçëè÷íè íèâà - òðàíñêðèïöèÿ íà ãåíèòå,
òðàíñëàöèÿ è ñëåäòðàíñëàöèîííà ñòàáèëèçàöèÿ.
Ìåõàíèçìè íà òîëåðàíòíîñò íà ðàñòåíèÿòà êúì
çàñóøàâàíå è âèñîêè òåìïåðàòóðè
Ðàñòåíèÿòà èçïèòâàò òðàåí âîäåí äåôèöèò ïðè
ïðîäúëæèòåëíî ïî÷âåíî çàñóøàâàíå, íî òàêà ñúùî è
ïðè çàñîëÿâàíå è íèñêè òåìïåðàòóðè. Âúâ âòîðèòå äâà
ñëó÷àÿ å çàòðóäíåí äîñòúïúò íà âîäà çà ðàñòåíèÿòà.
Óìåðåíèÿò âîäåí äåôèöèò ïðåäèçâèêâà çíà÷èòåëíè
ïðîìåíè âúâ âîäíèÿ ðåæèì è ðàñòåíèÿòà ãî ïðåîäîëÿâàò
÷ðåç îãðàíè÷àâàíå íà çàãóáèòå íà âîäà è/èëè ÷ðåç
ïîâèøàâàíå íà ïîãëúùàíåòî íà âîäà ÷ðåç ïî-ìîùíà
êîðåíîâà ñèñòåìà. Ñèëíèÿò âîäåí äåôèöèò ïðåäèçâèêâà
èçñúõâàíå, ïðè êîåòî ïî-ãîëÿìà ÷àñò îò ïðîòîïëàñòíàòà
âîäà ñå ãóáè è â êëåòêèòå ñå ñúäúðæàò ñàìî
íåçíà÷èòåëíè êîëè÷åñòâà ñâúðçàíà âîäà (Bartåls and
Salamini, 2001). Âîäíèÿò äåôèöèò ïðåäèçâèêâà
íàðóøåíèÿ îùå â ñòðóêòóðàòà è ôóíêöèÿòà íà
áèîïîëèìåðèòå, ïîíèæàâà åíçèìíàòà àêòèâíîñò, âîäè
äî äåñòðóêöèÿ íà ìåìáðàííèòå ñèñòåìè, çàãóáà íà
òóðãîð è èíõèáèðàíå íà ðàñòåæà êàòî èíòåãðàëåí
ôèçèîëîãè÷åí ïðîöåñ. Ïðîÿâèòå íà òåçè íàðóøåíèÿ
çàâèñÿò îò åôåêòèâíîñòòà íà çàùèòíèòå ìåõàíèçìè.
Ñðåä òÿõ íàé-äîáðå ñà ïðîó÷åíè îñìîòè÷íîòî
ñàìîðåãóëèðàíå è åêñïðåñèÿòà íà áåëòúöè ñúñ çàùèòíè
è ðåãóëàòîðíè ñâîéñòâà (Munns, 2002; Boudsocq and
Lauriere, 2005).
Îñìîòè÷íîòî ñàìîðåãóëèðàíå å ïðîöåñ íà
àêóìóëèðàíå íà íèñêîìîëåêóëÿðíè âåùåñòâà ïðåäèìíî
â öèòîïëàçìàòà íà êëåòêèòå è íà íåîðãàíè÷íè éîíè âúâ
âàêóîëàòà â óñëîâèÿ íà ðàçâèâàù ñå âîäåí äåôèöèò.
Ïî òîçè íà÷èí ñå óâåëè÷àâà îñìîòè÷íîòî íàëÿãàíå íà
êëåòêàòà êàòî öÿëî è òÿ çàïàçâà ñïîñîáíîñòòà ñè äà
ïîãëúùà âîäà îò ñðåäàòà. Ñðåä íàé-èçâåñòíèòå
îñìîëèòè ñà ïðîëèí, ãëèöèí-áåòàèí, ìàíèòîë è
ïîëèàìèíèòå ñïåðìèäèí è ñïåðìèí.
Óñòàíîâåíî å, ÷å ïðè âîäåí äåôèöèò ñå
óâåëè÷àâà åêñïðåñèÿòà íà íÿêîëêî ãðóïè áåëòúöè: Leaáåëòúöè
(late embryogenesis abundant), øàïåðîíè,
ïðîòåàçè, óáèêâèòèíè è àêâàïîðèíè. Lea-áåëòúöèòå ñå
äèôåðåíöèðàò â íÿêîëêî ïîäãðóïè, à åôåêòèòå èì ñà
ñâúðçàíè ñ ïîâèøåíà ñïîñîáíîñò äà ñâúðçâàò âîäà, äà
îáðàçóâàò êîìïëåêñè ñ âàæíè áåëòúöè, äà ñâúðçâàò éîíè
è äðóãè åôåêòè, çàùèòàâàùè êëåòêèòå îò îáåçâîäíÿâàíå.
Øàïåðîíèòå çàùèòàâàò áåëòúöèòå ïðè ôîðìèðàíå íà
òðåòè÷íàòà è ÷åòâúðòè÷íàòà èì ñòðóêòóðà, à ïðîòåàçèòå
è óáèêâèòèíèòå ïîäïîìàãàò ñåëåêòèâíàòà äåãðàäàöèÿ
íà óâðåäåíè áåëòúöè è ïî òîçè íà÷èí ïîäïîìàãàò
áúðçàòà èì çàìÿíà ñ íîâè, íåóâðåäåíè ìîëåêóëè.
Àêâàïîðèíèòå ñà áåëòúöè, îáðàçóâàùè âîäíè êàíàëè â
ìåìáðàíèòå, ïðåç êîèòî âîäàòà ïðåìèíàâà ñ âèñîêà
ñêîðîñò. ×ðåç åêñïðåñèÿ íà ïîâå÷å âîäíè êàíàëè (èëè
àêòèâàöèÿ íà ñúùåñòâóâàùèòå) â òîëåðàíòíèòå êúì
îáåçâîäíÿâàíå êëåòêè ñå îñèãóðÿâà áúðçî íàâëèçàíå íà
âîäà.
Ïîääúðæàíåòî íà íîðìàëíà ìåòàáîëèòíà
àêòèâíîñò ïðè çíà÷èòåëíè îòêëîíåíèÿ â òåìïåðàòóðíèòå
óñëîâèÿ ñå äîñòèãà ÷ðåç ôóíêöèîíèðàíåòî íà ðàçëè÷íè
ìåõàíèçìè. Ñðåä íàé-åôåêòèâíèòå ìåõàíèçìè íà
çàùèòà íà ðàñòåíèÿòà îò âèñîêè òåìïåðàòóðè ñà: (1)
ìîäèôèêàöèÿòà íà åíçèìíèòå ñèñòåìè; (2) åêñïðåñèÿòà
íà òåðìîøîêîâè áåëòúöè; (3) ìîäèôèêàöèÿòà íà
ìåìáðàííèòå ëèïèäè è äð. (Iba, 2002; Wahid et al., 2007).
Ïðèñïîñîáÿâàíåòî íà ìåòàáîëèçìà êúì âèñîêè
òåìïåðàòóðè å ñâúðçàíî ñ èçìåíåíèÿ â êàòàëèòè÷íèòå
ñâîéñòâà íà åíçèìèòå è/èëè ñ óâåëè÷àâàíå íà òÿõíîòî
êîëè÷åñòâî â êëåòêèòå. Êàòàëèòè÷íèòå ñâîéñòâà çàâèñÿò
îò åíåðãèÿòà íà àêòèâàöèÿ íà åíçèìíèòå ðåàêöèè; ïðè
ïîíèæàâàíå íà òåìïåðàòóðàòà òÿ íàìàëÿâà, à ïðè
ïîâèøàâàíå íàðàñòâà. Åíåðãåòè÷íàòà ïðîìÿíà ñå
ïîñòèãà ÷ðåç êîíôîðìàöèîííè èçìåíåíèÿ, ñâúðçàíè ñ
îáðàçóâàíå èëè ñ ðàçðóøàâàíå íà ñëàáèòå âîäîðîäíè,
âàíäåðâààëñîâè èëè åëåêòðîñòàòè÷íè âðúçêè.
Óâåëè÷àâàíåòî íà áðîÿ íà ñëàáèòå âðúçêè â åíçèìíèÿ
êîìïëåêñ ïîâèøàâà íåãîâàòà òåðìîñòàáèëíîñò, íî ïðè
òîâà ñå óâåëè÷àâà è åíåðãèÿòà íà àêòèâàöèÿ.
Äðóã ìåõàíèçúì çà àêëèìàòèçàöèÿ êúì âèñîêè
òåìïåðàòóðè å ñâúðçàí ñ åêñïðåñèÿòà íà òàêà
íàðå÷åíèòå “òåðìîøîêîâè áåëòúöè”. Òå ñå ñèíòåçèðàò
â îòãîâîð íà âèñîêè, íî íåëåòàëíè òåìïåðàòóðè â
ïðîäúëæåíèå íà íÿêîëêî ÷àñà. Òåçè áåëòúöè ñå
äèôåðåíöèðàò â íÿêîëêî ãðóïè è ïðîÿâÿâàò øèðîê
ñïåêòúð îò çàùèòíè ðåàêöèè ñïðÿìî áåëòú÷íèÿ
ìåòàáîëèçúì.
Ìîäèôèêàöèÿòà íà ìåìáðàííèòå ëèïèäè å
òðåòèÿò ìåõàíèçúì íà àêëèìàòèçàöèÿ êúì âèñîêîòåìÀãðàðåí
óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
61
ïåðàòóðåí ñòðåñ. Ìåìáðàíèòå èìàò ïîëóòå÷åí ñòðîåæ,
íåîáõîäèì çà íîðìàëíîòî ôóíêöèîíèðàíå íà
ëîêàëèçèðàíèòå â òÿõ åíçèìè, ïðåíîñèòåëè, âîäíè
êàíàëè è äð. Âèñîêèòå òåìïåðàòóðè ïðåäèçâèêâàò
ôàçîâè ïðåõîäè â ìåìáðàíèòå, ñâúðçàíè ñúñ
ñòðóêòóðíî-ôóíêöèîíàëíà äåçèíòåãðàöèÿ. Àêëèìàòèçàöèÿòà
êúì âèñîêè òåìïåðàòóðè å íàñî÷åíà êúì
ñòàáèëèçèðàíå íà ëèïèäíèÿ áèñëîé ÷ðåç ïðîìåíè â
ëèïèäíèÿ ìåòàáîëèçúì. Ñèíòåçèðàò ñå ìàñòíè êèñåëèíè
ñ èçìåíåíà äúëæèíà íà âåðèãàòà è ïðîìåíåí áðîé íà
äâîéíèòå (íåíàñèòåíèòå) âðúçêè. Ìåìáðàíèòå, â êîèòî
ìàñòíèòå êèñåëèíè ñà ñ ïî-äúëãà âúãëåâîäîðîäíà âåðèãà
è ñ ïî-ìàëúê áðîé äâîéíè âðúçêè, ñà ïî-òåðìîñòàáèëíè.
Ïðåç ïîñëåäíèòå ãîäèíè íàðàñòâà èíòåðåñúò
êúì òàêà íàðå÷åíèÿ îêèñëèòåëåí ñòðåñ ïðè ðàñòåíèÿòà
(Mittler, 2002; Suzuki and Mittler, 2006). Óñòàíîâåíî å, ÷å
ðàçëè÷íè ïî ñâîÿòà ïðèðîäà ñòðåñîâè ôàêòîðè, â òîâà
÷èñëî çàñóøàâàíå è âèñîêè òåìïåðàòóðè, ìîãàò äà
èíäóöèðàò ñúñòîÿíèå íà îêèñëèòåëåí ñòðåñ â
ðàñòåíèÿòà, ïîðàäè êîåòî òîâà ñúñòîÿíèå ñå âúçïðèåìà
êàòî êîìïîíåíò íà ïî÷òè âñÿêî ñòðåñîâî âúçäåéñòâèå.
Îêèñëèòåëíèÿò ñòðåñ â êëåòêàòà ñå ïðåäèçâèêâà
îò àêòèâíè êèñëîðîäíè âèäîâå (ÀÊÂ) (Î2
•−; Í2Î2; 1Î2),
÷èÿòî ïðîäóêöèÿ íàðàñòâà íåêîíòðîëèðóåìî ïðè
ñòðåñîâè ñèòóàöèè. Òå èìàò çíà÷èòåëåí îêèñëèòåëåí
ïîòåíöèàë è äîñòàòú÷åí ïîëóæèâîò (half-time), ïîðàäè
êîåòî ñà ñïîñîáíè äà îêèñëÿò âàæíè çà êëåòêàòà
ìàêðîìîëåêóëè – ëèïèäè, áåëòúöè è ÄÍÊ. Ñðåä íàéõàðàêòåðíèòå
íåãàòèâíè åôåêòè íà ÀÊÂ å ëèïèäíàòà
ïåðîêñèäàöèÿ, êîÿòî ñå ïîëó÷àâà ïðè ðåàêöèè íà
àêòèâíè êèñëîðîäíè âèäîâå ñ ïîëèíåíàñèòåíèòå ìàñòíè
êèñåëèíè â ñúñòàâà íà ëèïèäèòå, ðàçãðàæäàíå íà
áåëòúöèòå è èíàêòèâàöèÿ íà åíçèìèòå (Sairam et al.,
2005).
Çà çàùèòà îò îêèñëèòåëåí ñòðåñ ðàñòèòåëíèòå
êëåòêè ôîðìèðàò àíòèîêèñëèòåëíà çàùèòíà ñèñòåìà,
âêëþ÷âàùà íååíçèìíè è åíçèìíè êîìïîíåíòè.
Íååíçèìíè êîìïîíåíòè ñà àñêîðáèíîâàòà êèñåëèíà,
ãëóòàòèîíúò, òîêîôåðîëúò, êàðîòåíîèäíèòå ïèãìåíòè è
íÿêîè äðóãè íèñêîìîëåêóëíè ñúåäèíåíèÿ. Óñòàíîâåíà
å ñúùî òàêà è ñïåöèôè÷íàòà ðîëÿ íà ïîëèàìèíèòå êàòî
íååíçèìíè àíòèîêñèäàíòè (Tadolini, 1988; Lovaas, 1997).
Åíçèìíèòå êîìïîíåíòè âêëþ÷âàò åíçèìíè ñèñòåìè,
ñâúðçàíè ñ îáåçâðåæäàíåòî (èëè ðàçãðàæäàíåòî) íà
àêòèâíèòå êèñëîðîäíè âèäîâå, êàòî ñóïåðîêñèäíà
äèñìóòàçà, êàòàëàçà, ãëóòàòèîí ðåäóêòàçà, ïåðîêñèäàçè
è äð. Â óñëîâèÿ íà ñòðåñ âèñîêàòà àêòèâíîñò íà
àíòèîêèñëèòåëíèòå åíçèìè ñå ñâúðçâà ñ íèñêèòå íèâà
íà ëèïèäíà ïåðîêñèäàöèÿ â òîëåðàíòíèòå ãåíîòèïîâå.
Ïîâèøåíàòà àêòèâíîñò íà òåçè åíçèìè â óñëîâèÿ íà
ñòðåñ ìîæå äà áúäå ÷àñò îò ïî-îáùà àíòèîêèñëèòåëíà
ñèñòåìà, âêëþ÷âàùà è ðåãóëàöèÿ íà áåëòú÷íàòà ñèíòåçà
è ãåííàòà åêñïðåñèÿ (Scandalios et al., 1997).
Ïîäõîä è èíäèêàòîðè çà ïîäáîð íà ðàñòèòåëíè
ãåíîòèïîâå ñ ïîâèøåíà òîëåðàíòíîñò êúì
çàñóøàâàíå è âèñîêè òåìïåðàòóðè
Ïîðàäè ãîëÿìàòà çíà÷èìîñò íà ôàêòîðà „ñîðò”
çà óñòîé÷èâîñòòà íà çåìåäåëèåòî äíåñ ñå ðàçâèâàò
ñåëåêöèîííè ïðîãðàìè çà ïîäáîð è öåëåíàñî÷åíî
ñúçäàâàíå íà òîëåðàíòíè êúì çàñóøàâàíå è âèñîêè
òåìïåðàòóðè ãåíîòèïîâå ïðè îñíîâíèòå ñåëñêîñòîïàíñêè
êóëòóðè (Blum, 1988; Reynolds et al., 1999; Trethowan and
Pfeiffer, 1999; Hall, 2004).
Èçó÷àâàíåòî íà ìîðôîëîãè÷íè è ôèçèîëîãè÷íè
ïðèçíàöè, ñâúðçàíè ñ óñòîé÷èâîñò êúì àáèîòè÷åí ñòðåñ,
å â îñíîâàòà íà ò.íàð. õîëåñòè÷åí ïîäõîä, êîéòî âñå ïîóñïåøíî
ñå ïðèëàãà ïðè èäåíòèôèöèðàíå íà òîëåðàíòíè
ãåíîòèïîâå (Monneveux, 1989). Îòáîðúò ïî ìîðôîëîãè
÷íè è ôèçèîëîãè÷íè ïðèçíàöè â ðàííèòå åòàïè íà
ñåëåêöèÿòà äàâà ïîëåçíà èíôîðìàöèÿ, êîãàòî âñå îùå
íå ìîæå äà ñå ñëåäè äîáèâúò (Austin, 1993). Çà òàçè
öåë ñà íóæíè áúðçè è íàäåæäíè êîñâåíè ìåòîäè çà
åôåêòèâåí ñêðèíèíã íà ãîëÿì áðîé ãåíîòèïîâå (Jaafari,
1999; Szilagyi, 2003), êàêòî è àïàðàòóðà, êîÿòî äà ïîçâîëè
åêñïðåñíà îöåíêà çà ôèçèîëîãè÷íèÿ è áèîõèìè÷íèÿ
ñòàòóñ íà èíäèâèäóàëíè ðàñòåíèÿ è ìàëêè ïî ðàçìåð
ïîïóëàöèè.
Îöåíêàòà íà òîëåðàíòíîñòòà íà ðàñòèòåëíè
ãåíîòèïîâå êúì çàñóøàâàíå è âèñîêè òåìïåðàòóðè ìîæå
äà ñå èçâúðøâà â ëàáîðàòîðíè è â ïîëñêè óñëîâèÿ. Â
ëàáîðàòîðíè óñëîâèÿ åäèí âúçìîæåí ïîäõîä å
ïðåöåíêàòà íà ãåíîòèïîâåòå ïî äåïðåñèÿòà è
âúçñòàíîâÿâàíåòî íà ìëàäè ðàñòåíèÿ ñëåä îñìîòè÷åí
ñòðåñ (Bozhanova and Dechev, 2002; Áîæàíîâà è ñúàâò.,
2004). Êàòî èíäèêàòîð çà òîëåðàíòíîñò êúì çàñóøàâàíå
è âèñîêè òåìïåðàòóðè ñå èçïîëçâà êëåòú÷íàòà
ìåìáðàííà ñòàáèëíîñò, ïðåöåíåíà ïî åëåêòðîëèòíîòî
èçòè÷àíå îò ðàñòèòåëíèòå òúêàíè è íèâàòà íà ëèïèäíàòà
ïåðîêñèäàöèÿ (Reynolds et al., 1999; Munne-Bosch et al.,
2001). Äðóãè âúçìîæíè èíäèêàòîðè ñà ïàðàìåòðè íà
õëîðîôèëíàòà ôëóîðåñöåíöèÿ, àêòèâíîñòòà íà
àíòèñòðåñîâè åíçèìè è äð. (Blum, 1988; Hall, 2004; Zlatev
and Lidon, 2005). Ìîëåêóëÿðíîòî êàðòèðàíå è ãåíîìíèÿò
ïîäõîä îòêðèâàò íîâè âúçìîæíîñòè çà îïðåäåëÿíå íà
îñíîâíè ãåíè è QTL ëîêóñè, îò êîèòî çàâèñè
òîëåðàíòíîñòòà êúì ñòðåñîâè ôàêòîðè (Nguyen, 1999).
Ðàáîòàòà ñ ãîëÿì áðîé ãåíîòèïîâå â ïîëñêè
óñëîâèÿ å îãðàíè÷åíà îò äèíàìèêàòà íà êëèìàòè÷íèòå
ôàêòîðè, êîÿòî íàìàëÿâà êîðåêòíîñòòà íà ñðàâíèòåëíèòå
èçñëåäâàíèÿ. Â òåçè óñëîâèÿ ïîäõîäúò å
ñâúðçàí ñ îöåíêà íà ïðîìåíèòå âúâ ôèçèîëîãè÷íèÿ
ñòàòóñ íà ðàçëè÷íè ãåíîòèïîâå â õîäà íà ñòðåñîâîòî
âúçäåéñòâèå è ñëåä íåãîâîòî îòìèíàâàíå. Êàòî
èíäèêàòîðè ñå èçïîëçâàò ãàçîìåòðè÷íè (ñêîðîñò íà
ôîòîñèíòåçà è òðàíñïèðàöèÿ) è ôëóîðåñöåíòíè
ïàðàìåòðè, êàêòî è ïàðàìåòðè íà âîäíèÿ ðåæèì
62
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
(óòðèíåí âîäåí ïîòåíöèàë - predawn water potential),
îòíîñèòåëíî âîäíî ñúäúðæàíèå è äð. (Blum et al., 1998;
Blum, 1999). Ïàðàëåëíî â ñúõðàíåíè â òå÷åí àçîò ïðîáè
ìîæå äà ñå îïðåäåëÿò àêòèâíîñòòà íà àíòèîêèñëèòåëíè
åíçèìè, êîëè÷åñòâîòî è ðåäîêññúñòîÿíèåòî íà
íååíçèìíè àíòèîêñèäàíòè (ãëóòàòèîí, àñêîðáèíîâà
êèñåëèíà, êàðîòåíîèäè), íèâîòî íà ëèïèäíà
ïåðîêñèäàöèÿ è äð.
Âúâ âðúçêà ñ àêòóàëíîñòòà íà ïðîáëåìà çà
ñòðåñà îò çàñóøàâàíå è âèñîêè òåìïåðàòóðè ïðè
ðàñòåíèÿòà â Êàòåäðàòà ïî ôèçèîëîãèÿ íà ðàñòåíèÿòà
è áèîõèìèÿ â Àãðàðíèÿ óíèâåðñèòåò â Ïëîâäèâ å
ðàçâèòî íàó÷íî íàïðàâëåíèå â òîçè àñïåêò. Âå÷å ñà
ïðîâåäåíè èçñëåäâàíèÿ çà ñêðèíèðàíå íà òîëåðàíòíè
êúì çàñóøàâàíå è âèñîêè òåìïåðàòóðè ãåíîòèïîâå
ïàìóê, ïîëñêè ôàñóë è òþòþí (Áîæèíîâà è ñúàâò., 1999;
Áîæèíîâ è ñúàâò., 2000; Berova and Zlatev, 2002; Berova
and Zlatev, 2003). Ïðîó÷âàò ñå âúçìîæíîñòè çà
íàìàëÿâàíå íà ñòðåñîâèòå åôåêòè ÷ðåç èçïîëçâàíå íà
ðàñòåæíè ðåãóëàòîðè (Bårova and Zlatev, 2002; Berova
et al., 2002; Ñòîåâà è ñúàâò., 2005). Êàòåäðàòà ðàçïîëàãà
ñúñ ñúâðåìåííà íàó÷íà àïàðàòóðà, êîÿòî ïîçâîëÿâà
áúðçî è íàäåæäíî ðåãèñòðèðàíå íà ñòðåñà ïðè
ðàñòåíèÿòà ñ íåäåñòðóêòèâíè ìåòîäè: ïîðòàòèâíà
ôîòîñèíòåòè÷íà ñèñòåìà LCA-4 (ADC, England) è LCpro+
(ADC, England) – çà àíàëèç íà ëèñòíèÿ ãàçîîáìåí,
ôëóîðèìåòúð MINI-PAM (Walz, Germany) – çà àíàëèç
íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ, è êàìåðàòà çà
íàëÿãàíå (ELE-5535, ELE International, England), ñ êîÿòî
ñå îïðåäåëÿ âîäíèÿò ïîòåíöèàë â ëèñòàòà íà
ðàñòåíèÿòà. Êàòåäðàòà ó÷àñòâà â íàó÷åí êîíñîðöèóì ñ
Èíñòèòóòà ïî çåëåí÷óêîâè êóëòóðè «Ìàðèöà», Èíñòèòóòà
ïî îâîùàðñòâî â Ïëîâäèâ è Èíñòèòóòà ïî ïàìóêà è
òâúðäàòà ïøåíèöà – ×èðïàí, ôèíàíñèðàí îò Ôîíä
«Íàó÷íè èçñëåäâàíèÿ», çà ñúçäàâàíå íà ñúâìåñòíà
íàó÷íà èíôðàñòðóêòóðà è îáîðóäâàíå çà èçñëåäâàíèÿ
â îáëàñòòà íà ñòðåñà ïðè îñíîâíèòå ñåëñêîñòîïàíñêè
êóëòóðè (Âàñèëåâ è êîëåêòèâ, ïðîåêò ÄÎ 02-88/2008).
ËÈÒÅÐÀÒÓÐÀ
Áîæàíîâà, Â., 1997. Èçñëåäâàíå íà ñóõîóñòîé÷èâîñòòà
íà òâúðäàòà ïøåíèöà ÷ðåç äåïðåñèÿòà íà ðàñòåæà
ïðè îñìîòè÷åí ñòðåñ. – Â: Ñáîðíèê: Âòîðà íàó÷íà
êîíôåðåíöèÿ “Ïðîáëåìè íà âëàêíîäàéíèòå è
çúðíåíî-õëåáíèòå êóëòóðè”, ×èðïàí, 1997, 34-39.
Áîæàíîâà, Â., Ä. Äå÷åâ, Ø. ßíåâ, 2005. Òîëåðàíòíîñò
êúì îñìîòè÷åí ñòðåñ íà ãåíîòèïîâå òâúðäà ïøåíèöà.
– Field Crops Studies,v.II, 37-44.
Áîæàíîâà, Â., Ä. Äå÷åâ, Ø. ßíåâ, 2006. Èçñëåäâàíèÿ
âúðõó ñóõîóñòîé÷èâîñòòà ïðè òâúðäàòà ïøåíèöà. –
Ïî÷âîçíàíèå, àãðîõèìèÿ è åêîëîãèÿ, 30, 4 êí., 40-
46.
Áîæàíîâà, Â., Äå÷åâ, Ä., Äåíåâà, Ì., Ëàëåâ, Ö., Èâàíîâ,
Ï., 2004. Ïðîó÷âàíå íà âèäîâå îò ñåì. Gramineae ñ
öåë âêëþ÷âàíå â ñåëåêöèîííèòå ïðîãðàìè ïî òâúðäà
ïøåíèöà. – Ðàñòåíèåâúäíè íàóêè, 6, 439-495.
Áîæàíîâà, Â., Äå÷åâ, Ä., ßíåâ, Ø. è Ïåòðîâà, Ò., 2002.
Ïàðàìåòðè íà ôëàãîâèÿ ëèñò è âðúçêàòà èì ñúñ
ñòóäî-, ñóõîóñòîé÷èâîñòòà è äîáèâà ïðè òâúðäà
ïøåíèöà. – Â: Ñáîðíèê “Íàó÷íà êîíôåðåíöèÿ ñ
ìåæäóíàðîäíî ó÷àñòèå – Ñòàðà Çàãîðà – 2002”, 50-
54.
Áîæèíîâ, Á., À. Âàñèëåâ, Ë. Äèìèòðîâà, 2000.
Ñðàâíèòåëíî èçñëåäâàíå íà ôîòîñèíòåòè÷íàòà
àêòèâíîñò íà äâà ñîðòà ïàìóê – ×èðïàí 603 (G.
hirsutum L.) è C-6037 (G. barbadense L.), â óñëîâèÿ
íà çàñóøàâàíå è âèñîêè òåìïåðàòóðè. –
Ðàñòåíèåâúäíè íàóêè, 37, 452-458.
Áîæèíîâà, Ð., Á. Áîæèíîâ, À. Âàñèëåâ, 1999. Ïðîìåíè
âúâ âîäîîáìåíà è ôîòîñèíòåçàòà íà ðàçëè÷íè
ãåíîòèïîâå òþòþí, ïîäëîæåíè íà ÏÅÃ èíäóöèðàí
âîäåí ñòðåñ. I. Ôëóîðåñöåíòåí àíàëèç íà
ôîòîñèíòåçàòà. – Ðàñòåíèåâúäíè íàóêè, 36, 468-471.
Ãåð÷åâà, Ï., 2005. Âêîðåíÿâàíå è ðåãåíåðàöèÿ èí âèòðî
íà õèáðèäà Prunus fruticosa x Prunus cerasus. –
Ðàñòåíèåâúäíè íàóêè, 42, 423-426.
Ïåòêîâà, Â., Í. Âåëêîâ, À. Âàñèëåâ, 2007. Ôèçèîëîãè÷íà
ðåàêöèÿ íà êðàñòàâèöàòà (Cucumis sativus L.) êúì
ïðè÷èíèòåëÿ íà áðàøíåñòàòà ìàíà (Sphaerotheca
fuliginea (Shlecht .:FR.) OLL.). – Ðàñòåíèåâúäíè íàóêè,
(¹ 5), 44: 430-435.
Ïåòêîâà, Â., È. Ïîðÿçîâ, Ë. Êðúñòåâà, 2003. Ðåàêöèÿ
íà ãðàäèíñêèÿ ôàñóë (Phaseolus vulgaris L.) êúì
âèñîêè òåìïåðàòóðè ïðåç ðåïðîäóêòèâíèÿ ïåðèîä íà
ðàñòåíèÿòà. – Â: Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ,
Íàó÷íè òðóäîâå, ò. XLVI²², 133-138.
Ñòîåâà, Í., Ì. Áåðîâà, À. Âàñèëåâ, Ç. Çëàòåâ, Ö.
Áèíåâà, 2005. Åôåêò íà íÿêîè ðàñòåæíè ðåãóëàòîðè
êàòî àíòèäîòè íà ãàìà-ðàäèàöèîíåí ñòðåñ ïðè æèòíè
êóëòóðè. – Â: Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ,
Íàó÷íè òðóäîâå, ò. L, êí. 6, 221-226.
Austin, R.B., 1993, Augmenting yield-based selection. –
In: Hayward, M. et al. (editors). Plant Breeding:
Principles and Prospects, Chapman and Hall, London,
pp. 391-405.
Bartåls, D., F. Salamini, 2001. Desiccation Tolerance in the
Resurrection Plant Craterostigma plantagineum. A
Contribution to the Study of Drought Tolerance at the
Molecular Level. – Plant Physiol., 127:1346-1353.
Berova, M., Z. Zlatev, N. Stoeva, 2002. Effect of
paclobutrazol on wheat seedlings under low
temperature stress. – Bulg. J. Plant Physiol., 28 (1-2):
75-84.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
63
Berova, M., Z. Zlatev, 2002. Influence of soil drought on
growth and biomass partitioning in young bean
(Phaseolus vulgaris L.) plants. – Annual Report of the
Bean Improvement Cooperative, vol. 45: 190-191.
Blum, A, Mayer, J., Golan G. and Sinmena, B., 1998.
Drought resistance of a doubled-haploid line population
of rice in the field, Workshop on Genetic Improvement
of Rice for Water–Limited Environments, IRRI,
LosBanos, Philipines, December, 1998.
Blum, A., 1988. Plant breeding for stress environments.
CRC Press. Inc., Boca Raton, Florida.
Blum, A., 1999. Towards Standard Assays of Drought
Resistance in Crop Plants. – In: Molecular Approaches
for the Genetic Improvement of Cereals for Stable
Production in Water-Limited Environments, Ribaut J.
and Poland, D. (editors), CIMMYT, 29-35.
Boudsocq, M., Ch. Lauriere, 2005. Osmotic signaling in
plants. Multiple pathways mediated by emerging kinase
families. – Plant Physiol., 138, 1185-1194.
Bozhanova and Dechev, 2002. Assessment of tissue culture
derived durum wheat lines for somaclonal variation. –
Cereal Ress. Comm., 30, ¹ 3-4, 277-285.
Bruce, W. B., G. O. Edmeades, T.C. Barker, 2002.
Molecular physiological approaches to maize
improvement for drought tolerance. – J. Exp. Bot., 53
(365), 13-25.
Bårova and Zlatev, 2002. Physiological Response of
Paclobutrazol-Treated Triticale Plants to Water Stress. –
Biologia Plantarum, 46 (1): 133-136.
Hall, A., 2004. Breeding for adaptation for drought and heat
in cowpea. – Europ. J. Agron., 21, 447-459.
Iba, K., 2002. Acclimation response to temperature stress
in higher plants: approaches og gene engineering for
temperature tolerance. – Annu. Rev. Plant Biol., 53, 225-
245.
Jaafari, S., 1999. Morphophysiological tools for cereals
breeding for abiotic stress resistance. – In: The Fourth
International Crop Science Conference for Africa
“Sustainable Crop Production: Management, Protection,
and Rehabilitation”, 11-14 October, 1999, Casablanca,
Morocco.
Lovaas, E., 1997. Antioxidative and metal-chelating effects
of polyamines. – Adv. Pharmacol., 38, 119-149.
Mittler, R., 2002. Oxidative stress, antioxidants and stress
tolerance. – Trends in Plant Science, 7 (9), 405-410.
Monneveux, P., 1989. Quells strategies pour l’ameration
genrtique de la tolerance au deficit hydrique des
cereales d’hiver? Iiemes journees scientifiques du
Reseau Biotechnologres Vegetales AUPELF-UREF:
L’ameration des Plantes pour l’Adaptation aux milieeux
arides, Tunis, 4-9 dec, 1989, 209-234.
Munns, R., 2002. Comparative physiology of salt and water
stress. – Plant, Cell and Environ., 25, 239-250.
Nacheva, L. and Ivanova, K., 1998. Effects of the gas
exchange rate in the culture vessels on the
photosynthesis and the carbon metabolism of
micropropagated fruit plantlets (apple rootstock MM
106). – Biotechnol. &Biotechnol. Eq. 12 (1): 39-44.
Nguyen, H., 1999. Molecular Dissection of drought
resistance in crop plants: from traits to genes. – In:
Molecular Approaches for the Genetic Improvement of
Cereals for Stable Production in Water-Limited
Environments, Ribaut J. and Poland, D. (editors),
CIMMYT, 36-40.
Ohashi, Y., N. Nakayama, H. Saneoka, P. K. Mohapata, K.
Fujita, 2009. Differences in the responses of stem
diameter and pod thickness to drought stress during
the grain filling stage in soybean plants. – Acta Physiol.
Plant, 31:271-277.
Petkova, V., I. Denev, D. Cholakov, I. Porjazov, 2007. Field
screening for heat tolerant common bean cultivars
(Phaseolus vulgaris L.) by measuring of chlorophyll
fluorescence induction parameters. – Scientia
Horticulturae, vol. 111, 2:101-106.
Petkova, V., V. Nikolova, I. Poryazov, 2003. Possibilities
for selection of garden beans (Phaseolus vulgaris L.)
genotypes, tolerant to high temperature. I. Changes in
chlorophyll fluorescence parameters. – Annual report
of Bean Improvement Cooperative, vol. 46, p. 81-82.
Reynolds, M., Skovmand, B., Trethowan, R. and Pfeiffer,
W., 1999, Evaluating a conceptual model for drought
tolerance. – In: Molecular Approaches for the Genetic
Improvement of Cereals for Stable Production in Water-
Limited Environments, Ribaut J. and Poland, D.
(editors), CIMMYT, 49-53.
Sairam, R., Srivastava G., Agarwal S., Meena R.C., 2005.
Differences in antioxidant activity in response to salinity
stress in tolerant and susceptible wheat genotypes. –
Biol. Plant., 49, 85-91.
Scandalios, J.G., Guan L., Polidoros A.N., 1997. Catalases
in plants: gene structure, properties, regulation and
expression. – In: Oxidative stress and the molecular
biology of antioxidant defenses. Scandalios J.G. (ed.).
Cold Spring Harbor Laboratory Press, New York, pp.
343-398.
Suzuki, N., R. Mittler, 2006. Reactive oxygen species and
temperature stress. A delicate balance between
signaling and destruction. – Physiol. Plant., 126, 45-
51.
Szilagyi, L., 2003. Influence of drought on seed yield
components in common bean. – Bulg. J. Physiol.,
Special Issue, 320-330.
64
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Tadolini, B., 1988. Polyamine inhibition of lipid peroxidation.
– Biochem. J., 249, 33-36.
Trethowan, R. and Pfeiffer, W., 1999. Challenges and future
strategies in breeding wheat for adaptation to drought
stressed environments: a CIMMYT wheat program
perspective, CIMMYT, 45-48.
Wahid, A., S. Goelani, A. Ashraf, M. R. Foolad, 2007. Heat
tolerance in plants: an overview. – Env. Exp. Bot., 61,
199-223.
Zlatev, Z., F. Lidon, 2005. Effects of water deficit on plant
growth, water relations and photosynthesis. – Biologia
Vegetal e Agro-Industrial, 2, 235-252.
Àâòîðèòå èçêàçâàò áëàãîäàðíîñò íà Ôîíä “Íàó÷íè
èçñëåäâàíèÿ” çà ïðåäîñòàâåíîòî ôèíàíñèðàíå íà
ïðîåêò ÄÎ 02-88/2008.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Âàñèëèé Ãîëöåâ
E-mail: goltsev@biofac.uni-sofia.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
65
ÑÏÎÑÎÁÍÎÑÒ ÇÀ ÎÑÌÎÐÅÃÓËÀÖÈß ÏÐÈ ÒÂÚÐÄÀ ÏØÅÍÈÖÀ, ÎÒÄÀËÅ×ÅÍÈ ÂÈÄÎÂÅ È ÕÈÁÐÈÄÈ ÌÅÆÄÓ ÒßÕ
OSMOTIC ADJUSTMENT ABILITY IN DURUM WHEAT, DISTANT SPECIES AND THEIR HYBRIDS
Âèîëåòà Áîæàíîâà*, Áîðÿíà Õàäæèèâàíîâà
Violeta Bozhanova*, Borjana Hadzhiivanova
Èíñòèòóò ïî ïàìóêà è òâúðäàòà ïøåíèöà, ×èðïàí
Cotton and Durum Wheat Research Institute, Chirpan
*E-mail:violetazb@gmail.com
Ðåçþìå
Ñåäåì îáðàçåöà îò îòäàëå÷åíè âèäîâå îò ðîä Aegilops è ðîä Triticum, ïåò ãåíîòèïà òâúðäà ïøåíèöà è 19
õèáðèäíè ëèíèè, ïîëó÷åíè îò òÿõíîòî êðúñòîñâàíå, ñà îöåíÿâàíè ïî ñïîñîáíîñòòà èì çà ðåãóëàöèÿ íà îñìîòè÷íîòî
íàëÿãàíå ÷ðåç èçïîëçâàíå íà êîñâåí ìåòîä. Âêëþ÷åíèòå â èçñëåäâàíåòî ðîäèòåëè ñúùåñòâåíî ñå ðàçëè÷àâàò ïî
òîçè ïîêàçàòåë, êàòî âàðèðàíåòî íà êîåôèöèåíòà íà äåïðåñèÿ å â ðàìêèòå ìåæäó 5.8% çà îáðàçåöà îò Ae. tauschii,
ñ íàé-äîáðà ñïîñîáíîñò çà îñìîðåãóëàöèÿ, äî 64.2% ïðè îáðàçåöà Tr.dicoccoides – ñ íàé-ñëàáà. Îñåì îò èçïèòâàíèòå
õèáðèäíè ëèíèè ñå îòëè÷àâàò ñ ïî-äîáðà îñìîðåãóëàöèÿ â ñðàâíåíèå ñ íàé-òîëåðàíòíèòå íà çàñóøàâàíå òâúðäè
ïøåíèöè, êàòî ëèíèÿòà 25 (Âúçõîä x Tr.dicoccoides F1) ïîêàçâà íàé-íèñúê êîåôèöèåíò íà äåïðåñèÿ.
Abstract
The osmotic adjustment ability in seven patterns of species from Aegilops and Triticum, five durum wheat genotypes
and nineteen hybrid lines, derived from their crossing were estimated using an indirect method. The parents involved
in the experiment differ considerably in the above mentioned trait and the variation of the depression coefficients is between
5.8% in Ae. tauschii with the best osmoregulation ability and 64.2% in Tr.dicoccoides the weakest. Eight of the studied
hybrid lines possess a better capacity for osmoregulation than most drought tolerant durum wheat genotypes. Hybrid line
25 (Vazchod x Tr.dicoccoides) F1 manifests the lowest depression coefficients among the hybrids.
Êëþ÷îâè äóìè: òâúðäà ïøåíèöà, ñïîñîáíîñò çà îñìîðåãóëàöèÿ, ñóõîóñòîé÷èâîñò, îòäàëå÷åíà õèáðèäèçàöèÿ.
Key words: durum wheat, osmotic adjustment ability, drought resistance, alien hybridisation.
ÂÚÂÅÄÅÍÈÅ
Ðåãóëàöèÿòà íà îñìîòè÷íîòî íàëÿãàíå å åäèí
îò íàé-âàæíèòå êëåòú÷íè àäàïòàöèîííè ìåõàíèçìè,
íàñòúïâàù ñàìî ïðè çàïî÷âàùî îáåçâîäíÿâàíå. Çà äà
ñå ìèíèìèçèðà çàãóáàòà íà âîäà îò ê ëåòêèòå è çà äà ñå
ïîääúðæàò êëåòú÷íèòå ôóíêöèè, ïðè âîäåí äåôèöèò â
êëåòêèòå ñå íàòðóïâàò ðàçòâîðèìè âåùåñòâà. ×ðåç òîçè
îñíîâåí êëåòú÷åí îòãîâîð, âúçíèêâàù ïðè çàñóøàâàíå,
ñå èçáÿãâà äåõèäðàòèðàíåòî íà êëåòêèòå è ïîíèæàâàíåòî
íà äîáèâà (Blum, 2005).
Ðàñòåíèÿòà, îòëè÷àâàùè ñå ñ ïî-äîáðà
ñïîñîáíîñò çà îñìîðåãóëàöèÿ, ïîêàçâàò ïî-äîáúð
ðàñòåæ è ïî-âèñîê äîáèâ â óñëîâèÿ íà çàñóøàâàíå.
Ãåíîòèïíè ðàçëè÷èÿ â ñïîñîáíîñòòà çà îñìîðåãóëàöèÿ
ñà äîêëàäâàíè äîñåãà ïðè ðàçëè÷íè êóëòóðè (Morgan et
al., 1986; Blum, 1989; Morgan, 1992).
Îáèêíîâåíî ãåíîòèïîâåòå ñå õàðàêòåðèçèðàò ïî
îòíîøåíèå íà ðåãóëàöèÿòà íà îñìîòè÷íîòî íàëÿãàíå
÷ðåç ïîêàçàòåëèòå îñìîòè÷åí ïîòåíöèàë è îòíîñèòåëíî
âîäíî ñúäúðæàíèå â ëèñòàòà, êîèòî ñà ìíîãî òðóäîåìêè
è íå ñà ïðèëîæèìè çà îöåíêà íà ãîëÿì áðîé ñåëåêöèîííè
ëèíèè (Áîæàíîâà è äð., 2009). Êàòî çàìåñòèòåë íà òåçè
ìåòîäè ñå èçïîëçâàò êîñâåíè ìåòîäè - ìåòîäúò çà
èçìåðâàíå íà äúëæèíàòà íà êîëåîïòèëà â óñëîâèÿ íà
îñìîòè÷åí ñòðåñ è ìåòîäúò çà îò÷èòàíå íà îñìîòè÷íàòà
ðåãóëàöèÿ íà íèâî ïîëåíîâè çúðíà, è äâàòà ïðåäëîæåíè
îò Morgan (Morgan, 1988; Morgan, 1999) è èçïîëçâàíè è
â ïî-ñúâðåìåííè èçñëåäâàíèÿ íà ñóõîóñòîé÷èâîñòòà
(Moud and Yamagishi, 2005; Moud and Maghsoudi, 2008).
Ïðîâåæäàíåòî íà èíòåíçèâåí ñêðèíèíã ìåæäó
îáðàçöè îò îòäàëå÷åíè äèâè è êóëòóðíè âèäîâå íà ñåì.
Gramineae ïîçâîëÿâà îòêðèâàíå íà òîëåðàíòíè êúì
çàñóøàâàíå ãåíîòèïîâå, êîèòî ìîæå äà áúäàò âêëþ÷åíè
â ñåëåêöèîííèòå ïðîãðàìè çà ñúçäàâàíå íà ãåíåòè÷íî
ðàçíîîáðàçèå ïî òîçè ïðèçíàê. Stankova et al. (1995) è
Zaharieva et al. (2003) óñòàíîâÿâàò, ÷å âèäîâåòå îò ðîä
Aegilops ñà ïðèâëåêàòåëíè êàòî èçòî÷íèöè íà ãåíè çà
66
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
óñòîé÷èâîñò íà áèîòè÷íè è àáèîòè÷íè ñòðåñîâè
âúçäåéñòâèÿ.
Öåëòà íà íàñòîÿùîòî èçñëåäâàíå å äà ñå
íàïðàâè áúðç ñêðèíèíã íà ñåëåêöèîííè ëèíèè, ïîëó÷åíè
â ðåçóëòàò íà îòäàëå÷åíà õèáðèäèçàöèÿ, è òåõíèòå
ðîäèòåëè – íÿêîè âèäîâå îò ðîäîâåòå Aegilops è Triticum
è ãåíîòèïîâå òâúðäà ïøåíèöà ïî ïðèçíàêà ñïîñîáíîñò
çà îñìîðåãóëàöèÿ êàòî ïîêàçàòåë çà ñóõîóñòîé÷èâîñò.
ÌÀÒÅÐÈÀË È ÌÅÒÎÄ
 èçñëåäâàíåòî ñà âêëþ÷åíè 19 õèáðèäíè ëèíèè,
ïîëó÷åíè îò êðúñòîñâàíåòî íà òâúðäà ïøåíèöà ñ âèäîâå
îò ðîä Aegilops è Triticum, îò ðàçëè÷íè ãåíåðàöèè îò F1
äî F5, áåêêðîñíè ëèíèè ÂC1, ÂC2 è òåõíèòå ðîäèòåëè (7
îáðàçåöà îò îòäàëå÷åíè âèäîâå è 5 ãåíîòèïîâå òâúðäà
ïøåíèöà), êîèòî ñà äåòàéëíî îïèñàíè â òàáëèöà 1.
Ðàñòåíèÿòà îò F1 è ÂC1 ïîêîëåíèÿòà ñà îòãëåæäàíè ïðè
îðàíæåðèéíè óñëîâèÿ, à òåçè îò ïî-íàïðåäíàëèòå
ãåíåðàöèè - ïðè ïîëñêè. Â ðàçïàäàùèòå ñå ïîïóëàöèè
ñà îòáèðàíè ðàñòåíèÿ ñ ôåíîòèï íà òâúðäà ïøåíèöà.
Ìåòîäèêàòà çà îò÷èòàíå íà äåïðåñèÿòà â ðàñòåæà
íà êúëíîâå â ðåçóëòàò íà îñìîòè÷åí ñòðåñ å îïèñàíà
ïîäðîáíî â ïðåäèøíà ïóáëèêàöèÿ (Áîæàíîâà è äð., 2006).
Åêñïåðèìåíòúò å èçâúðøåí â òðè ïîâòîðåíèÿ çà âñåêè
âàðèàíò è ãåíîòèï, êàòî çà âñÿêî ïîâòîðåíèå ñà èçìåðâàíè
ïî 20 êúëíà. Êîåôèöèåíòúò íà äåïðåñèÿ ñå èç÷èñëÿâà â
ïðîöåíòè ïî ôîðìóëàòà íà Blum et al. (1980).
% äåïðåñèÿ = [(À-B)/À] x 100, êúäåòî:
À å ñðåäíàòà äúëæèíà íà êîðåíà/ïðîðàñòúêà â
êîíòðîëåí âàðèàíò, mm;
B - ñðåäíàòà äúëæèíà íà êîðåíà/ïðîðàñòúêà ïðè
îñìîòè÷åí ñòðåñ, mm.
Äîñòîâåðíîñòòà íà ðàçëèêèòå ìåæäó ñðåäíèòå
àðèòìåòè÷íè íà êîåôèöèåíòèòå íà äåïðåñèÿ ïðè
èçñëåäâàíèòå ãåíîòèïîâå å óñòàíîâåíà ÷ðåç òåñò çà
ìíîæåñòâåíî ñðàâíÿâàíå ïî Duncan, êàòî çà öåëòà å
èçïîëçâàíà ïàêåò-ïðîãðàìàòà Statistika-6, Stat Soft.
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
Ìåòîäúò çà èçìåðâàíå íà íàðàñòâàíåòî íà
êîëåîïòèëà â óñëîâèÿ íà âîäåí äåôèöèò å ðàçðàáîòåí
îò Morgan (Morgan, 1988) è ñå îñíîâàâà íà ôàêòà, ÷å
ãåíîòèïîâåòå, êîèòî èìàò ïî-äîáúð ïîòåíöèàë çà
îñìîðåãóëàöèÿ, ñà â ñúñòîÿíèå äà ïîääúðæàò ïî-äîáúð
òóðãîð è ñâúðçàíèòå ñ íåãî ôèçèîëîãè÷íè ïðîöåñè êàòî
ïîääúðæàíå íà ïî-èíòåíçèâíî íàðàñòâàíå íà êëåòêèòå
ïî âðåìå íà âîäåí äåôèöèò. Èçïîëçâàíèÿò îò íàñ ìåòîä
çà îò÷èòàíå íà äåïðåñèÿòà â ðàñòåæà íà êîðåíèòå è
ïðîðàñòúöèòå íà íèâî êúëí ñå áàçèðà íà òîçè ìåòîä.
Îñìîòè÷íèÿò ñòðåñ, ñèìóëèðàí ÷ðåç äîáàâÿíå íà 1Ì
ðàçòâîð íà çàõàðîçà, ïðèëîæåí ñëåä ôàçà ïîêúëâàíå,
èíõèáèðà íàðàñòâàíåòî íà êúëíîâåòå ïðè âñè÷êè
âêëþ÷åíè â åêñïåðèìåíòà ãåíîòèïîâå. Ïðè ïîâå÷åòî îò
èçñëåäâàíèòå ãåíîòèïîâå âîäíèÿò äåôèöèò ïîòèñêà â
ïî-ãîëÿìà ñòåïåí íàðàñòâàíåòî íà íàäçåìíàòà ÷àñò –
ïðîðàñòúêà, â ñðàâíåíèå ñ êîðåíà. Ñòîéíîñòèòå íà
ïðèçíàöèòå äúëæèíà íà êîðåíèòå, äúëæèíà íà
ïðîðàñòúêà, îòíîøåíèå ìåæäó êîðåíèòå è ïðîðàñòúöèòå
ïðè íîðìàëíà âîäîîáåçïå÷åíîñò è ïðè îñìîòè÷åí ñòðåñ
è êîåôèöèåíòèòå íà äåïðåñèÿ â ðàñòåæà íà êîðåíèòå è
ïðîðàñòúöèòå, êàòî èçðàç íà ñïîñîáíîñòòà çà îñìîòè÷íà
ðåãóëàöèÿ íà íèâî öÿëî ðàñòåíèå, íà ðîäèòåëñêèòå
ãåíîòèïîâå è õèáðèäíèòå êîìáèíàöèè è ñòàòèñòè÷åñêàòà
äîêàçàíîñò íà ðàçëèêèòå ñà ïîñî÷åíè â òàáëèöà 1.
Âêëþ÷åíèòå â èçñëåäâàíåòî ðîäèòåëè - îáðàçöè
îò ðàçëè÷íè âèäîâå íà ñåì. Æèòíè è ñîðòîâå òâúðäà
ïøåíèöà, ñúùåñòâåíî ñå ðàçëè÷àâàò ïî ñïîñîáíîñòòà
ñè çà îñìîðåãóëàöèÿ. Âàðèðàíåòî íà êîåôèöèåíòà íà
äåïðåñèÿ å â ðàìêèòå ìåæäó 5.8% çà îáðàçåöà îò Ae.
tauschii, êîéòî ïîêàçâà íàé-äîáðà ñïîñîáíîñò çà
îñìîðåãóëàöèÿ, äî 64.2 % ïðè îáðàçåöà Tr.dicoccoides
– ñ íàé-ñëàáà. Ñîðòîâåòå òâúðäà ïøåíèöà À-233 è
„Áåëîñëàâà” ñ êîåôèöèåíòè íà äåïðåñèÿ 21.7% è 22.9%
ñå îòëè÷àâàò ñúñ ñðàâíèòåëíî äîáðî íèâî íà
îñìîðåãóëàöèÿ (Áîæàíîâà è äð., 2009). Îáðàçöèòå îò
Ae. umbellulata, Tr. timopheevii, Tr. spelta è Tr. carthlicum
ïîêàçâàò ïî-íèñêî íèâî íà îñìîðåãóëàöèÿ è ñúîòâåòíî
ïî-ñëàáà ñóõîóñòîé÷èâîñò â ñðàâíåíèå ñ îñòàíàëèòå ïî-
÷óâñòâèòåëíè êúì îáåçâîäíÿâàíå ñîðòîâå òâúðäà
ïøåíèöà – „Ãåðãàíà”, „Âúçõîä” è Ä-6189.
Ñóõîóñòîé÷èâîñòòà íà îáðàçöè îò ðîä Aegilops,
â òîâà ÷èñëî è Ae. tauschii, å äîêëàäâàíà è îò äðóãè
àâòîðè âúç îñíîâà íà ôèçèîëîãè÷íè ïîêàçàòåëè êàòî
îòíîñèòåëíî âîäíî ñúäúðæàíèå (RWC), âîäåí
ïîòåíöèàë â ëèñòàòà (LWP) (Damania et al., 1992).
Óñòàíîâåíî å ïîâèøàâàíå íà ñóõîóñòîé÷èâîñòòà ïðè
ñèíòåòè÷íà õåêñàïëîèäíà ïøåíèöà, ïîëó÷åíà îò
êðúñòîñâàíåòî íà Tr.durum è Ae. tauschi (Valkoun, 2001).
Èçïèòâàíèòå õèáðèäíè ëèíèè ïîêàçâàò
ðàçëè÷íà ñïîñîáíîñò çà îñìîðåãóëàöèÿ. Îñåì îò òÿõ
ñå îòëè÷àâàò ñ ïî-äîáðà îñìîðåãóëàöèÿ â ñðàâíåíèå ñ
íàé-òîëåðàíòíèòå íà çàñóøàâàíå òâúðäè ïøåíèöè: äâå
ëèíèè – 14 è 16, îò êðúñòîñêàòà ìåæäó òâúðäà ïøåíèöà
è Tr. carthlicum, äâå ëèíèè – 20 è 29, îò õèáðèäèçèðàíåòî
ñ Tr. spelta, ëèíèÿ 21 - ñ Tr. monoccocum, ëèíèÿ 26 - ñ Tr.
timopheevii, ëèíèÿ 30 – ñ Triticale. Ïðè ëèíèÿòà 25
(Âúçõîä x Tr. dicoccoides F1) å èçìåðåí íàé-íèñúê
êîåôèöèåíò íà äåïðåñèÿ îò âñè÷êè èçñëåäâàíè
õèáðèäíè ëèíèè. Òîçè ðåçóëòàò å òðóäíî äà áúäå
îáÿñíåí, êàòî ñå èìà ïðåäâèä, ÷å äèâèÿò îáðàçåö,
ó÷àñòâàù êàòî áàùèí ðîäèòåë â êðúñòîñêàòà, ïîêàçâà
íàé-âèñîê êîåôèöèåíò íà äåïðåñèÿ. Âúçìîæíîòî
îáÿñíåíèå å ïîÿâàòà íà ãîëÿì õåòåðîçèñåí åôåêò â òîâà
F1 ïîêîëåíèå, âîäåù äî ïîíèæàâàíå íà êîåôèöèåíòà íà
äåïðåñèÿ, ò.å. äî ïî-âèñîêî íèâî íà îñìîðåãóëàöèÿ è
êîíñòàòèðàí îò íàñ â èçñëåäâàíèÿ çà óñòàíîâÿâàíå
íàñëåäÿâàíåòî íà òîçè ïðèçíàê (Bozhanova and Dechev,
2010).
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
67
Òàáëèöà 1. Äåïðåñèÿ â ðàñòåæà íà êúëíîâå ïîä äåéñòâèåòî íà îñìîòè÷åí ñòðåñ (1M çàõàðîçà) ïðè õèáðèäè,
ïîëó÷åíè îò êðúñòîñâàíåòî íà òâúðäà ïøåíèöà ñ îòäàëå÷åíè âèäîâå è òåõíèòå ðîäèòåëè
Table 1. Growth depressing in seedling, cultivated in solution with increasing osmotic pressure in durum wheat
interspecific hybrids and their parents
Òðè õèáðèäíè ëèíèè - 13, 15, 17, ñà ñ
êîåôèöèåíòè íà äåïðåñèÿ, ñúèçìåðèìè ñ òåçè íà
ãåíîòèïîâåòå òâúðäà ïøåíèöà ñ íàé-âèñîêî íèâî íà
îñìîðåãóëàöèÿ, à âñè÷êè îñòàíàëè äåâåò ëèíèè – ñ
êîåôèöèåíòè, ïî-âèñîêè îò íàé-÷óâñòâèòåëíèòå
ãåíîòèïîâå òâúðäè ïøåíèöè, èçïîëçâàíè â
èçñëåäâàíåòî. Õèáðèäíèòå ëèíèè 27 – îò êðúñòîñâàíåòî
ñ Tr. dicoccoides, 28 – ñ Tr. aestivum, è 24 – ñ Tr.
timopheevii, ïîêàçâàò íàé-âèñîêè êîåôèöèåíòè íà
äåïðåñèÿ è ñëåäîâàòåëíî ñà ñ íàé-ñëàáà ñïîñîáíîñò
çà îñìîðåãóàöèÿ.
Êàòî öÿëî âñè÷êè âêëþ÷åíè â èçñëåäâàíåòî
ãåíîòèïîâå – ðîäèòåëè è õèáðèäè, ìîæå äà ñå
ðàçïðåäåëÿò â ÷åòèðè ãðóïè â çàâèñèìîñò îò
êîåôèöèåíòèòå íà äåïðåñèÿ íà ïðîðàñòúöèòå â ñðåäà
ñ âèñîêî îñìîòè÷íî ñúäúðæàíèå.  ïúðâàòà ãðóïà ñ íàé-
Генотип
Genotype
Дължина на кълновете
Length of seedlings
Коефициент
на депресия
Depression
Coefficient %
Контрола
Control
Осмотичен стрес
Osmotic stress
К
R
cm
П
R
cm
К/П
R/S
К
R
cm
П
R
cm
К/П
R/S
К
R
П
S
1.Aeg. tauschii (D) 37.2 29 1.28 29 27.3 1.1 22 5.8a
2.Aeg.umbellulata (U) 38.3 22.7 1.69 23.5 15.5 1.5 38.6 31.7gh
3.Tr.dicoccoides 38 53 0.72 16.5 19 0.87 56.6 64.2l
4.Tr.monoccocum (A) 39.4 50.8 0.76 23.2 35.9 0.64 41.1 29.3g
5.Tr.timopheevii (AG) 51.4 58.8 0.87 36.4 39.2 0.93 29.2 33.3 gh
6.Tr.spelta (ABD) 46.4 52.3 0.88 18.8 35 0.53 59.5 33.1 gh
7.Tr.carthlicum (AB) 51.6 51.2 1.0 30.6 30.6 1.0 40.7 40.2ij
8. Tr.durum А -233 (AB) 39 23 1.7 33.5 18 1.9 14.1 21.7e
9. Tr.durum Гергана 43 24.5 1.8 28.5 16.7 1.7 33.7 31.8 gh
10. Tr.durum Възход 49.8 50.1 0.99 47.5 35.8 1.3 4.6 28.5d
11. Tr.durum Белослава 46,1 42 1.1 41,4 32,4 1.3 10,2 22,9ef
12. Tr.durum Д-6189 79.6 63.7 1.3 45 45.1 1.0 43.3 29.2g
13. 7346 x Tr.dicoccoides 54.5 53.4 1.0 31.3 41.1 0.76 42.6 23ef
14. 7383 x Tr.carthlicum 27 41.6 52.1 0.79 37.2 46 0.80 10.6 11.7bc
15. 7383 x Tr.carthlicum30ч 48.8 54.7 0.89 35.4 42 0.84 27.5 23.2ef
16. 7383 x Tr.carthlicum30б 31,6 25,7 1.23 30,1 24,6 1.23 4,7 4,3a
17. 7383 x Tr.carthlicum29 32,7 51,4 0.64 31,6 16,9 1.87 3,4 67,1l
18. 7383 x Tr.carthlicum б 58,3 50 1.17 46,5 28,5 1.63 20,2 43,0j
19. 7383 x Tr.carthlicum ч. 57,3 47,3 1.2 28 34,3 0.82 51,1 27,5fg
20. (В-од х 6189) F1 x Tr.spelta F4
x Възход В1
53 43,1 1.23 43,4 34,2 1.27 18,1 20,6e
21. (В-од х 6189) F1x
Tr.monoccocum
48 48.2 1.0 39.4 30.7 1.28 16.3 18de
22. (Г-на х Белослава) F1 х
Tr.spelta F5
62.2 50.3 1.24 49 35.2 1.39 21.3 30.1g
23.(Г-на х В-од)F1 x Aeg. tauschii
B1
60.3 50.6 1.19 39.4 32.2 1.22 34.7 36.4hi
24.(Г-на х В-од)F1 x Tr.timopheevii 57.5 47.3 1.22 34 22.2 1.53 41 53.1k
25.Възход x Tr.dicoccoides F1 62.6 54 1.16 48.5 49.2 0.99 22.5 8.9ab
26.(В-од х 6189) F1 x Tr.timopheevii
x Tr.durum B1
53 43.1 1.23 43.4 34.2 1.26 18.1 20.6e
27. 6189 х Tr.dicoccoides 63.8 53.9 1.18 14.8 9.5 1.56 76.8 82.4n
28. 6467 x Преслав В1 59,3 46,7 1.27 16,5 10,8 1.53 72,2 76,9m
29. (П-с х Б-ва) F1 х Tr.spelta F4 х
Възход В1/3
52,8 41,9 1.26 43,7 35,9 1.21 17,2 14,3bcd
30. 6189 х Triticale 60.7 49.3 1.23 48.4 41.9 1.15 20.3 15cde
31. Б-ва х Aeg.umbellulata F1 x
Tr.durum В1
63,3 47 1.35 36 32,5 1.11 43,1 30,9gh
Ê – êîðåí, Ï – ïðîðàñòúê; R - roots, S – Shoot
68
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
íèñêè êîåôèöèåíòè íà äåïðåñèÿ – îò 4.3% äî 18%, è ñ
íàé-âèñîêî íèâî íà îñìîðåãóëàöèÿ, ïî-äîáðî îò òîâà
íà èçñëåäâàíèòå ãåíîòèïîâå òâúðäà ïøåíèöà, ïîïàäàò
22.6% îò âñè÷êè ãåíîòèïîâå. Âúâ âòîðàòà ãðóïà ñ
êîåôèöèåíòè íà äåïðåñèÿ îò 20.6 äî 22.9% è ñúñ ñðåäíî
âèñîêî íèâî íà îñìîðåãóëàöèÿ, ñúèçìåðèìî ñ òîâà íà
íàé-òîëåðàíòíèòå íà çàñóøàâàíå òâúðäè ïøåíèöè,
ïîïàäàò 19.4%. Íàé-ìíîãîáðîéíà å ãðóïàòà íà
ãåíîòèïîâåòå ñúñ çàäîâîëèòåëíî íèâî íà îñìîðåãóëàöèÿ,
â êîÿòî ïîïàäàò è íàé-÷óâñòâèòåëíèòå êúì
îñìîòè÷åí ñòðåñ ñîðòîâå òâúðäà ïøåíèöà.
ÈÇÂÎÄÈ
 ðåçóëòàò íà ïðîâåäåíîòî èçñëåäâàíå ñà
èäåíòèôèöèðíè õèáðèäíè ëèíèè ñ ïî-âèñîêî íèâî íà
îñìîðåãóëàöèÿ â ñðàâíåíèå ñ èçïîëçâàíèòå ãåíîòèïîâå
òâúðäà ïøåíèöà. Òå ìîæå äà ñå âêëþ÷àò ïî-íàòàòúê â
ñåëåêöèîííàòà ïðîãðàìà çà ïîâèøàâàíå íà òîëåðàíòíîñòòà
êúì çàñóøàâàíå. Íåîáõîäèìî å òîçè ïúðâîíà-
÷àëåí ñêðèíèíã äà áúäå çàäúëáî÷åí ÷ðåç ïðîñëåäÿâàíå
íà ïîâå÷å ôèçèîëîãè÷íè ïîêàçàòåëè è àãðîíîìè÷åñêè
ïðèçíàöè, ñâúðçàíè ñ ðàñòåæà è ïðîäóêòèâíîñòòà ïðè
çàñóøàâàíå.
ËÈÒÅÐÀÒÓÐÀ
Blum, A., 1989. Osmotic adjustment and growth of barley
genotypes under drought stress. – Crop Science, 29,
230-233.
Áîæàíîâà, Â, Äå÷åâ Ä. è Ø. ßíåâ, 2006. Èçñëåäâàíèÿ
âúðõó ñóõîóñòîé÷èâîñòòà ïðè òâúðäàòà ïøåíèöà. –
Ïî÷âîçíàíèå, àãðîõèìèÿ è åêîëîãèÿ, 30, 4 êí., 40-46.
Áîæàíîâà, Â., Ä. Äå÷åâ, Å. Òîäîðîâñêà, 2009.
Èçïîëçâàíå íà ãåíîòèïíèòå ðàçëè÷èÿ â ñïîñîáíîñòòà
çà îñìîðåãóëàöèÿ â ñåëåêöèÿòà íà òâúðäàòà
ïøåíèöà. – Field Crops Studies, 5, 21-32.
Bozhanova, V. and Dechev, D., 2010. Heritability of osmotic
regulation ability in durum wheat. – Agricultural Science
and Technology (in press).
Blum, A., Sinmena B. and Ziv O., 1980. An evaluation of
seed and seedling drought tolerance screening tests in
wheat. – Euphytica, 29:727-736.
Blum, A., 2005. Drought resistance, water-use efficiency,
and yield potential - are they compatible, dissonant, or
mutually exclusive? – Australian Journal of Agricultural
Research, 56, 1159-1168.
Damania, A.B., Altunji, H. and Dhaliwal, H.S., 1992.
Evaluation of Aegilops spp. for drought and frost
tolerance. Genetic Resources Unit Annual Report, 1992,
ICARDA, pp. 45-46.
Moud, A. and T. Yamagishi, 2005. Application of Projected
Pollen Area Response to Drought Stress to Determine
Osmoregulation Capability of Different Wheat (Triticum
aestivum L.) cultivars. – Int. J. Agri. Biol., Vol. 7, ¹ 4,
604-805.
Moud, A. and K. Maghsoudi, 2008. Application of coleoptile
growth response method to differentiate osmoregulation
capability of wheat cultivars. – Research Journal of
Agronomy, 2, 36-43.
Morgan, J.M. and A.G. Condon, 1986. Water use, grain
yield and osmoregulation in wheat. – Aust. J. Plant
Physiol, 13:523-532.
Morgan, J.M., 1988. The use of coleoptile responses to water
stress to differentiate wheat genotypes for osmoregulation,
growth and yield. – Ann. Bot., 62: 193-8.
Morgan, J.M., 1992. Osmotic components and properties
associated with genotypic differences inosmoregulation
in wheat. – Australian J. Pl. Physiol., 19: 67-76.
Morgan, J.M., 1999. Pollen grain expression of a gene
controlling differences in osmoregulation inwheat leaves:
a simple breeding method. – Australian J. Agric. Res.,
50: 953-62.
Stankova, P., Rekika, D., Zacharieva, M., Monneveux, P.,
1995. Improvement of durum wheat formultiple stress
tolerance: Potential interest of Aegilops sp. – In: Fibre
and Cereal Crops Problems, Cotton and Durum Wheat
Research Institute, Chirpan, Bulgaria, 45-56.
Valkoun, J.J., 2001. Wheat pre-breeding using wild
progenitors. – Euphytica, 119:17-23.
Zaharieva, M., Dimov, A., Stankova P., David, J. and
P. Monneveux, 2003. Morphological diversityand
potential interest for wheat improvement of three
Aegilops L. species from Bulgaria. – Genetic Resources
and Crop Evolution, Vol. 50, ¹ 5.
Àâòîðèòå èçêàçâàò áëàãîäàðíîñò íà Ôîíä “Íàó÷íè
èçñëåäâàíèÿ” çà ïðåäîñòàâåíîòî ôèíàíñèðàíå íà
ïðîåêò ÄÎ 02-88/2008.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Àíäîí Âàñèëåâ
E-mail: vassilev@au-plovdiv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
69
ÂËÈßÍÈÅ ÍÀ ÇÀÑÓØÀÂÀÍÅÒÎ ÂÚÐÕÓ ÂÀÐÈÐÀÍÅÒÎ È ÊÎÐÅËÀÖÈÈÒÅ ÍÀ ÊÎËÈ×ÅÑÒÂÅÍÈ ÏÐÈÇÍÀÖÈ
ÏÐÈ ÒÂÚÐÄÀ ÏØÅÍÈÖÀ
INFLUENCE OF DROUGTH ON VARIATION AND CORELLATIONS SHIPS OF QUANTATIVES TRAITS IN DURUM
WHEAT
Âèîëåòà Áîæàíîâà*, Äå÷êî Äå÷åâ
Violeta Bozhanova*, Dechko Dechev
Èíñòèòóò ïî ïàìóêà è òâúðäàòà ïøåíèöà, ×èðïàí
Cotton and Durum Wheat Research Institute, Chirpan
*E-mail:violetazb@gmail.com
Ðeçþìå
Ñðàâíÿâàò ñå ïðèçíàöè, ñâúðçàíè ñ ðàñòåæà è ïðîäóêòèâíîñòòà, òÿõíîòî âàðèðàíå è êîðåëàöèîííè âðúçêè
ìåæäó òÿõ â ðàçëè÷íè ñðåäè íà âîäîçàïàñåíîñò â ïîïóëàöèÿ îò äèàëåëíà êðúñòîñêà ñ ïåò ãåíîòèïà òâúðäà ïøåíèöà.
Îáåçâîäíÿâàíåòî íà íèâî öÿëî ðàñòåíèå, ïðèëîæåíî ñëåä ôàçà êðàé íà âðåòåíåíå äî ôàçà óçðÿâàíå, ïðåäèçâèêâà
ïîíèæàâàíå íà ñðåäíèòå ñòîéíîñòè ïðåç öåëèÿ ïåðèîä íà èçñëåäâàíå ïðè âñè÷êè èçó÷àâàíè àãðîíîìè÷åñêè âàæíè
ïðèçíàöè. Ðàçìàõúò íà âàðèðàíåòî ïðè ïî-ãîëÿìà ÷àñò îò èçó÷àâàíèòå ïðèçíàöè íàìàëÿâà â óñëîâèÿ íà âîäåí
äåôèöèò. Ñ ïðîìÿíàòà íà ñðåäàòà ñå ïðîìåíÿò è âçàèìîâðúçêèòå ìåæäó èçñëåäâàíèòå ïðèçíàöè. Îáùîïðèåòèòå
êîðåëàöèîííè âðúçêè ìåæäó ðàçëè÷íè ìîðôîëîãè÷íè è ñòîïàíñêè ïðèçíàöè, êîèòî ñå èçïîëçâàò ïðè îòáîðà íà
âèñîêîäîáèâíè ãåíîòèïîâå, íå ìîãàò äà ñå èçïîëçâàò â óñëîâèÿòà íà âîäåí äåôèöèò. Ïîòâúðäè ñå, ÷å îòíîøåíèåòî
ìåæäó äúëæèíàòà íà ïîñëåäíîòî ìåæäóâúçëèå è âèñî÷èíàòà íà ðàñòåíèåòî ìîæå äà ñëóæè êàòî êîñâåí ïðèçíàê çà
îòáîð íà âèñîêîäîáèâíè ãåíîòèïîâå â óñëîâèÿ íà ñòðåñ.
Abstract
Traits related to growth and productivity, theirs variation and correlation ships at two different water regimes in
population of diallel crossing of 5 durum wheat genotypes were compared. The dehydration applied after the end of the
stem extension stage until the ripening stage resulted in decrease of the main values of all studied agronomically important
traits. In the conditions of water deficit the range of variation at most studied traits decreases. With changing of environment
the correlation ships between studied traits are changed, too. The commonly accepted correlation ships between different
morphological and agronomical traits that are used for selection of genotypes with high productivity can not used in water
deficit conditions. It is confirmed, that the ratio between peduncle length and plant high can be served as indirect traits for
selection of high productive genotypes in stress environments.
Êëþ÷îâè äóìè: òâúðäà ïøåíèöà, ñóõîóñòîé÷èâîñò, ðàñòåæ, ïðîäóêòèâíîñò.
Key words: durum wheat, drought resistances, growth, productivity.
ÂÚÂÅÄÅÍÈÅ
Ñúçäàâàíåòî íà òîëåðàíòíè êúì çàñóøàâàíå
ñîðòîâå å òðóäíà çàäà÷à çà ñåëåêöèîííèòå ïðîãðàìè ïðè
çèìíèòå æèòíè âèäîâå, â ò.÷. è ïðè òâúðäàòà ïøåíèöà.
Îñíîâíèòå çàòðóäíåíèÿ ïðîèçòè÷àò îò ëèïñàòà íà
ïîñòîÿííî äåéñòâèå íà ñòðåñîâèÿ ôàêòîð, ðàçíîîáðàçèåòî
îò ôàêòîðè, õàðàêòåðèçèðàùè ñóøàòà, è
ñâúðçàíàòà ñ òîâà ðàçëè÷íà ñòðàòåãèÿ çà òîëåðàíòíîñò,
êîÿòî ðàñòåíèÿòà ðàçâèâàò. Ìíîãîîáðàçèåòî îò ðåàêöèè,
âêëþ÷åíè â îòãîâîðà íà ðàñòåíèÿòà êúì îáåçâîäíÿâàíå,
ñå ïðîÿâÿâàò ÷ðåç êîìáèíàöèÿ îò ïðèçíàöè íà
ôèçèîëîãè÷íî è ôåíîòèïíî íèâî, êîåòî çàòðóäíÿâà
èçïîëçâàíåòî íà óíèôèöèðàí òåñò èëè åäèíè÷íè
ïðèçíàöè çà îòáîð íà óñòîé÷èâè ãåíîòèïîâå. Çà âñåêè
åäèí ñöåíàðèé íà çàñóøàâàíå îòäåëíè è ìíîãî ÷åñòî
ðàçëè÷íè ïðèçíàöè äîïðèíàñÿò çà ñïåöèôè÷íîòî
àäàïòèðàíå íà ðàñòåíèÿòà êúì âîäíèÿ äåôèöèò (Vàn
Ginkel et al., 1998). Òîçè ïðîáëåì äîïúëíèòåëíî ñå
óñëîæíÿâà ïðè ðàáîòà â ðàçïàäàùè ñå ïîïóëàöèè.
70
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Íåçàâèñèìî îò íåïðåêúñíàòèÿ íàïðåäúê ïðè
èçÿñíÿâàíå íà ôóíäàìåíòàëíèòå ìåõàíèçìè íà
ñóõîóñòîé÷èâîñòòà íà ôèçèîëîãè÷íî, ãåíåòè÷íî è
ìîëåêóëÿðíî íèâî (Cattiveli et al., 2002; Cattiveli et al.,
2008) âñå îùå å íàëèöå ãîëÿìà ðàçëèêà â äîáèâèòå,
ðåàëèçèðàíè îò ñúâðåìåííèòå ñîðòîâå æèòíè âèäîâå
ïðè îïòèìàëíè óñëîâèÿ è â óñëîâèÿ íà âîäåí äåôèöèò.
Ïîðàäè ãîðåïîñî÷åíèòå òðóäíîñòè çà öåëèòå íà
ïðàêòè÷åñêàòà ñåëåêöèÿ ïðè èäåíòèôèöèðàíåòî íà
òîëåðàíòè íà çàñóøàâàíå ãåíîòèïîâå íàé-÷åñòî ñå
èçïîëçâà ñðàâíÿâàíåòî íà äîáèâà â ðàçëè÷íè óñëîâèÿ
(Voltas et al., 2005). Äîðè íÿêîè àâòîðè ñ÷èòàò, ÷å îòáîðúò
ïî ïðèçíàöè, ñâúðçàíè ñ âèñîêîäîáèâíîñò, ìîæå äà
äîïðèíåñå çà ïîâèøàâàíå íà äîáèâà è â óñëîâèÿ íà
âîäåí äåôèöèò (Slafer et al., 1994; Araus et al., 2002).
Äðóãà ãðóïà èçñëåäîâàòåëè îáà÷å ñà íà ìíåíèå, ÷å
ñåëåêöèîíåí íàïðåäúê ìîæå äà ñå ïîñòèãíå ñàìî ïðè
ïðîâåæäàíå íà îòáîðà â ñòðåñîâè óñëîâèÿ (Ceccarelli,
1987; Ceccarelli et al., 1991). Òîâà òâúðäåíèå å â
ñúîòâåòñòâèå ñ ìíåíèåòî íà Falconer (1952), êîéòî
ñ÷èòà, ÷å åêñïðåñèÿòà íà âñåêè åäèí êîëè÷åñòâåí
ïðèçíàê, â ò.÷. è äîáèâà â ðàçëè÷íè ñðåäè - îïòèìàëíè
óñëîâèÿ è â óñëîâèÿ íà ñòðåñ, å òîëêîâà ðàçëè÷íà, ÷å
ìîæå äà ñå ðàçãëåæäà êàòî îòäåëíè ïðèçíàöè, êîèòî
íÿìàò íåïðåìåííî ìàêñèìàëíî èçðàæåíèå ïðè åäíè è
ñúùè êîìáèíàöèè îò àëåëè.
Öåëòà íà íàñòîÿùîòî èçñëåäâàíå å äà ñå
ñðàâíÿò ïðèçíàöè, ñâúðçàíè ñ ðàñòåæà è
ïðîäóêòèâíîñòòà, òÿõíîòî âàðèðàíå è êîðåëàöèîííè
âðúçêè ìåæäó òÿõ â ðàçëè÷íè ñðåäè íà âîäîçàïàñåíîñò
â ïîïóëàöèÿ îò äèàëåëíà êðúñòîñêà ñ ïåò ãåíîòèïà
òâúðäà ïøåíèöà, êîåòî áè ïîäïîìîãíàëî èçãðàæäàíåòî
íà ïðàâèëíà ñåëåêöèîííà ñòðàòåãèÿ çà ïîâèøàâàíå íà
òîëåðàíòíîñòòà êúì çàñóøàâàíå.
ÌÀÒÅÐÈÀË È ÌÅÒÎÄ
Èçñëåäâàíåòî å ïðîâåäåíî â ïåðèîäà 2006-
2009 ã. Èçïîëçâàíè ñà 5 ñîðòà è ëèíèè òâúðäà ïøåíèöà,
ïîêàçàëè ðàçíîîáðàçèå â ïðåäèøíè íàøè äúëãîãîäèøíè
èçñëåäâàíèÿ ïî ïîêàçàòåëÿ äåïðåñèÿ â ðàñòåæà íà
êúëíîâå, ïîäëîæåíè íà îñìîòè÷åí ñòðåñ: ñòàðèÿò
áúëãàðñêè ñîðò À-233, ñîðòîâåòå „Ãåðãàíà”, „Âúçõîä” è
„Áåëîñëàâà” è ñåëåêöèîííàòà ëèíèÿ Ä-6189. Åæåãîäíî
ïåòòå ðîäèòåëñêè ãåíîòèïà ñà äèàëåëíî êðúñòîñàíè è
àíàëèçèðàíè ïî ìåòîä IV, ìîäåë I íà ñõåìà ïî Griffing
(1956). Õèáðèäèçàöèÿòà å èçâúðøåíà ïðè ïîëñêè
óñëîâèÿ. Êàñòðèðàíè è îïðàøåíè ñà ïî 20 êëàñà îò
êðúñòîñêà.
Ïåòíàäåñåòòå ãåíîòèïà – 5 ðîäèòåëè è 10
õèáðèäà, ñà çàñåòè âúâ âåãåòàöèîííà êúùà â ñúäîâå â
äâà âàðèàíòà: 1. êîíòðîëíè óñëîâèÿ ñ íîðìàëíà
âîäîîáåçïå÷åíîñò; 2. çàñóøàâàíå îò ôàçà êðàé íà
âðåòåíåíå äî óçðÿâàíå (ðàñòåíèÿòà ñà ïîëèâàíè ñ
ïîëîâèíàòà îò êîëè÷åñòâîòî âîäà, èçïîëçâàíî â
êîíòðîëíèÿ âàðèàíò). È ïðè äâàòà âàðèàíòà âñè÷êè
ãåíîòèïîâå ñà çàñåòè â òðè ïîâòîðåíèÿ ïî òðè ðàñòåíèÿ
çà âñåêè ãåíîòèï. Ïðîñëåäåíè ñà ñòîéíîñòèòå íà
ñëåäíèòå ïîêàçàòåëè: 1. âèñî÷èíà íà ðàñòåíèÿòà; 2.
äúëæèíà íà êëàñà; 3. äúëæèíà íà ïîñëåäíîòî
ìåæäóâúçëèå; 4. îòíîøåíèå ìåæäó âèñî÷èíàòà íà
ðàñòåíèåòî è äúëæèíàòà íà ïîñëåäíîòî ìåæäóâúçëèå;
5. îáùà áðàòèìîñò; 6. ïðîäóêòèâíà áðàòèìîñò; 7. áðîé
êëàñ÷åòà â êëàñ; 8. áðîé çúðíà â êëàñ; 9. òåãëî íà çúðíàòà
â êëàñ; 10. ìàñà íà 1000 çúðíà.
Çà ñòàòèñòè÷åñêà îáðàáîòêà íà äàííèòå îò
åêñïåðèìåíòà å èçïîëçâàí ïàêåò ïðîãðàìè Statistika è
ñà ïðèëîæåíè âàðèàöèîíåí è êîðåëàöèîíåí àíàëèç.
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
Îáåçâîäíÿâàíåòî íà íèâî öÿëî ðàñòåíèå,
ïðèëîæåíî ñëåä ôàçà êðàé íà âðåòåíåíå äî ôàçà
óçðÿâàíå, ïðåäèçâèêâà ïîíèæàâàíå íà ñðåäíèòå
ñòîéíîñòè îò öåëèÿ ïåðèîä íà èçñëåäâàíå ïðè âñè÷êè
èçó÷àâàíè àãðîíîìè÷åñêè âàæíè ïðèçíàöè, êîèòî êàòî
öÿëî õàðàêòåðèçèðàò ðàñòåæà è ïðîäóêòèâíîñòòà íà
ðàñòåíèÿòà îò ïîïóëàöèÿòà íà ïåòòå ðîäèòåëñêè
ãåíîòèïà òâúðäà ïøåíèöà è õèáðèäíèòå êîìáèíàöèè
ìåæäó òÿõ (òàáë.1). Ïîäëîæåíèòå íà çàñóøàâàíå
ðàñòåíèÿ îñòàâàò ñ 7,6 cm ïî-íèñêè ñðåäíî îò âñè÷êè
ó÷àñòâàùè â äèàëåëíàòà êðúñòîñêà ãåíîòèïîâå –
ðîäèòåëè è õèáðèäè. Òå ñà ñ 0,2 cm ïî-êúñ êëàñ è ñ 3 cm
ïî-ìàëêà äúëæèíà íà ïîñëåäíîòî ìåæäóâúçëèå;
ôîðìèðàò ñ îêîëî 3 áð. ïî-ìàëêî îáùè è ïðîäóêòèâíè
áðàòÿ, ñ 1 áð. ïî-ìàëêî êëàñ÷åòà â êëàñ; ôîðìèðàò ñ 5
áð. ïî-ìàëêî çúðíà â êëàñ, êîèòî ñà ñ 0,2 g ïî-ëåêè. Ïîä
âëèÿíèå íà îáåçâîäíÿâàíåòî â íàé-ãîëÿìà ñòåïåí
íàìàëÿâàò îáùàòà è ïðîäóêòèâíàòà áðàòèìîñò –
ñúîòâåòíî ñ 23,7% è ñ 25,1%, òåãëîòî íà çúðíàòà â êëàñ
– ñ 12,5%, è áðîÿò íà çúðíàòà â êëàñ – 11% , à â íàéìàëêà
– äúëæèíàòà íà êëàñà è áðîÿò íà êëàñ÷åòàòà - ñ
3%, è ìàñàòà íà 1000 çúðíà ñ 1%. Íåçíà÷èòåëíîòî
ïîíèæàâàíå íà ñðåäíèòå ñòîéíîñòè íà ìàñàòà íà 1000
çúðíà, à â åäíà îò ãîäèíèòå äîðè è ëåêîòî è ïîêà÷âàíå,
íàé-âåðîÿòíî ñå äúëæè íà íàìàëåíèÿ áðîé çúðíà â
êëàñà ïðè çàñóøàâàíå.
Îò ïðåäñòàâåíèÿ â òàáëèöà 1 âàðèàöèîíåí
àíàëèç ñå âèæäà, ÷å ðàçìàõúò íà âàðèðàíåòî ïðè ïîãîëÿìàòà
÷àñò îò èçó÷àâàíèòå ïðèçíàöè íàìàëÿâà â
óñëîâèÿ íà âîäåí äåôèöèò, êàòî â íàé-ãîëÿìà ñòåïåí
òî íàìàëÿâà ïî îòíîøåíèå íà ïðèçíàöèòå „âèñî÷èíà íà
ðàñòåíèåòî” è „ìàñà íà 1000 çúðíà”. Óñòàíîâåíîòî â òîçè
åêñïåðèìåíò íàìàëåíèå â ðàçìàõà íà âàðèðàíåòî íà
ñðåäíèòå ñòîéíîñòè íà ïðèçíàöè, ñâúðçàíè ñ ðàñòåæà è
ïðîäóêòèâíîñòòà íà òâúðäàòà ïøåíèöà ïðè çàñóøàâàíå,
å â ñúîòâåòñòâèå è ñ äðóãè èçñëåäâàíèÿ ïðè
îáèêíîâåíàòà ïøåíèöà (Dhanda et al., 2004). Òîçè ôàêò
ïîêàçâà, ÷å èäåíòèôèöèðàíåòî íà ãåíîòèïíèòå ðàçëè÷èÿ
ïî òåçè ïðèçíàöè ñå çàòðóäíÿâà â óñëîâèÿ íà ñòðåñ è
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
71
Òàáëèöà 1. Âàðèàöèîíåí àíàëèç íà ñðåäíèòå ñòîéíîñòè íà ïðèçíàöè, ñâúðçàíè ñ ðàñòåæà è ïðîäóêòèâíîñòòà, â
äèàëåëíà êðúñòîñêà ñ òâúðäà ïøåíèöà â ðàçëè÷íè ñðåäè
Table 1. Variation analyses of means at traits related to growth and productivity in diallel crossing of durum wheat
Признаци
Traits
Средно
Mean
х
Min Max
Варианс
Variance
Стандартна
грешка
Standard error
Нормална водообезпеченост - Water comfort
Вис. на растенията
PH
76,8 68,9 91,3 44,6 1,7
Дължина на класа SL 7,1 6,3 7,98 0,28 0,13
Дължина на
последно
междувъзлие PL
37,1 32,6 43,2 10,9 0,85
Последно
междувъзлие/
Височина PL/PH
0,48 0,45 0,53 0,0004 0,005
Обща братимост GT 13,4 9 16,5 4,5 0,55
Продукт. братимост
PT
11,7 7,5 14,5 3,02 0,45
Класчета/клас F/S 18,54 15,8 21,4 1,8 0,34
Зърна/клас G/S 40 29,4 50 37,8 1,6
Тегло на зърн./клас
GW/S
1,6 0,8 2,2 0,16 0,10
Маса на 1000 зърна
TKW
38,6 22,6 46,9 44,3 1,7
Воден дефицит – Water deficit
Вис. на растенията
PH
69,2 60,9 80,2 26,3 1,32
Дължина на класа SL 6,87 5,6 7,8 0,4 0,16
Дължина на
последно
междувъзлие PL
34,4 28,8 41,1 11,9 0,89
Последно
междувъзлие/
Височина PL/PH
0,49 0,41 0,59 0,002 0,01
Обща братимост GT 10,2 7,4 13 2,3 0,39
Продукт. братимост
PT
8,76 5,7 10,4 2,1 0,37
Класчета/клас F/S 17,9 12,9 19,7 3,0 0,45
Зърна/клас K/S 35,4 25,7 45 30,1 1,4
Тегло на зърн./клас
KW/S
1,4 0,89 1,96 0,13 0,09
Маса на 1000 зърна
TKW
38,4 28,5 46,5 24,3 1,3
òðÿáâà äà ñå èìà ïðåäâèä ïðè èçãðàæäàíåòî íà
ñåëåêöèîííèòå ñòðàòåãèè ïî îòíîøåíèå íà
ïîäîáðÿâàíåòî íà òîëåðàíòíîñòòà êúì çàñóøàâàíå.
Ñ ïðîìÿíàòà íà ñðåäàòà ñå ïðîìåíÿò è
âçàèìîâðúçêèòå ìåæäó èçñëåäâàíèòå ïðèçíàöè. Òîâà
ñå âèæäà â òàáëèöà 2, â êîÿòî ñà ïðåäñòàâåíè
êîðåëàöèîííèòå êîåôèöèåíòè ìåæäó ïðèçíàöè,
õàðàêòåðèçèðàùè ðàñòåæà è ïðîäóêòèâíîñòòà â
ïîïóëàöèÿòà îò ðîäèòåëè è õèáðèäè, ó÷àñòâàùè â
äèàëåëíàòà êðúñòîñêà. Â óñëîâèÿ íà íîðìàëíà
âîäîîáåçïå÷åíîñò ñà äîáðå äîêàçàíè ïîëîæèòåëíèòå
êîðåëàöèè ìåæäó ïðèçíàöèòå: âèñî÷èíà è äúëæèíà íà
ïîñëåäíî ìåæäóâúçëèå; âèñî÷èíà è áðîé çúðíà â êëàñ;
äúëæèíà íà êëàñà è ìàñà íà 1000 çúðíà; äúëæèíà íà
êîðåíà íà íèâî êúëí è äúëæèíà íà ïîñëåäíîòî
ìåæäóâúçëèå; äúëæèíà íà ïðîðàñòúêà è îáùà
72
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Òàáëèöà 2. Êîðåëàöèîííè çàâèñèìîñòè, èçðàçåíè ÷ðåç êîåôèöèåíòèòå íà êîðåëàöèÿ r ìåæäó èçó÷àâàíèòå
ïðèçíàöè â ðàçëè÷íè ñðåäè
Table 2. Correlation ships, expressed by correlation coefficient (r) between studied traits in different environment
Приз-
нак
Trait
Висо-
чина
PH
1
Дълж.
на
класа
SL
2
Дълж.
посл.
межд.
PL
3
Посл.
межд./
височ.
PL/PH
4
Обща
брати-
мост
GT
5
Прод.
брати-
мост
PG
6
Клас-
чета/
Клас
F/S
7
Зърна/
клас
бр.
K/S
8
Тегло
зърна/
клас
KW/S
9
Маса
на1000
зърна
TKW
10
Дъл-
жина
корен
LR
11
Дъл-
жина
прор.
LS
12
Нормална водообезпеченост Water comfort
1 1 - 0,75
***
- + + + 0,52
**
+ - - +
2 1 - + 0,52
*
3 0,82
***
-,56
**
1 + 0,59
**
4 -0,73
*
1
5 1 0,95
***
0,74
***
6 0,52
**
1
7 1 0,75
**
0,69
***
0,73
***
8 0,57
**
1 0,88
***
0,70
***
9 0,54
**
1
10 -0,59
**
1
11 1
12 1
Воден дефицит – Water deficit
PH - plant height, SL - spike length, PL - peduncle length, GT - general tillering, PT - productive tillerimg, FS - florets in
spike, K/S - number of kernel in spike, KW/S – kernel weight per spike, TKW – thousand kernel weight, RL - length of
roots in seedling stage, SL – length of shoots in seedling stage
áðàòèìîñò; äúëæèíà íà ïðîðàñòúêà è êëàñ÷åòà â êëàñ;
ïðîäóêòèâíà è îáùà áðàòèìîñò; áðîé êëàñ÷åòà â êëàñ è
áðîé çúðíà â êëàñ; áðîé êëàñ÷åòà â êëàñ è òåãëî íà
çúðíàòà â êëàñ; áðîé çúðíà â êëàñ è òåãëî íà çúðíàòà è
ìàñà íà 1000 çúðíà è áðîé çúðíà â êëàñ.
 óñëîâèÿòà íà âîäåí äåôèöèò ãîðåñïîìåíàòèòå
êîðåëàòèâíè âðúçêè íå ñå óñòàíîâÿâàò ñ
èçêëþ÷åíèå íà ïîëîæèòåëíàòà êîðåëàöèÿ ìåæäó
âèñî÷èíàòà íà ðàñòåíèåòî è äúëæèíàòà íà ïîñëåäíîòî
ìåæäóâúçëèå.  óñëîâèÿ íà ñòðåñ îáà÷å çàïî÷âàò äà ñå
äîêàçâàò êîðåëàòèâíè âðúçêè ìåæäó äðóãè ïðèçíàöè:
– îòðèöàòåëíè êîðåëàöèè ìåæäó: äúëæèíàòà íà
ïîñëåäíîòî ìåæäóâúçëèå è äúëæèíàòà íà êëàñà; ìåæäó
âèñî÷èíàòà íà ðàñòåíèåòî è îòíîøåíèåòî ìåæäó
âèñî÷èíàòà íà ðàñòåíèåòî è äúëæèíàòà íà ïîñëåäíî
ìåæäóâúçëèå; ïðîäóêòèâíàòà áðàòèìîñò è ìàñàòà íà
1000 çúðíà; ïðîäóêòèâíàòà áðàòèìîñò è îòíîøåíèåòî
ìåæäó äúëæèíàòà íà ïîñëåäíîòî ìåæäóâúçëèå è
âèñî÷èíàòà íà ðàñòåíèåòî.
– ïîëîæèòåëíè êîðåëàöèè ìåæäó: äúëæèíàòà íà
êëàñà è áðîÿ çúðíà â êëàñ; äúëæèíàòà íà êëàñà è òåãëîòî
íà çúðíàòà â êëàñ.
ÈÇÂÎÄÈ
Ðàçìàõúò íà âàðèðàíåòî ïðè ïî-ãîëÿìà ÷àñò îò
èçó÷àâàíèòå ïðèçíàöè íàìàëÿâà â óñëîâèÿ íà âîäåí
äåôèöèò, êîåòî âîäè äî çàòðóäíåíèÿ â èäåíòèôèöèðàíåòî
íà ãåíîòèïíèòå ðàçëè÷èÿ â óñëîâèÿ íà ñòðåñ.
Ñ ïðîìÿíàòà íà ñðåäàòà ñå ïðîìåíÿò è
âçàèìîâðúçêèòå ìåæäó èçñëåäâàíèòå ïðèçíàöè.
Îáùîïðèåòèòå êîðåëàöèîííè âðúçêè ìåæäó ðàçëè÷íè
ìîðôîëîãè÷íè è ñòîïàíñêè ïðèçíàöè, èçïîëçâàíè ïðè
îòáîðà íà âèñîêîäîáèâíè ãåíîòèïîâå, íàé-âåðîÿòíî íå
ìîæå äà ñå èçïîëçâàò â óñëîâèÿòà íà âîäåí äåôèöèò.
Ïîòâúðäè ñå, ÷å îòíîøåíèåòî ìåæäó äúëæèíàòà
íà ïîñëåäíîòî ìåæäóâúçëèå è âèñî÷èíàòà íà ðàñòåíèåòî
ìîæå äà ñëóæè êàòî êîñâåí ïðèçíàê çà îòáîð íà
âèñîêîäîáèâíè ãåíîòèïîâå òâúðäà ïøåíèöà â óñëîâèÿ
íà ñòðåñ.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
73
ËÈÒÅÐÀÒÓÐÀ
Araus, J.L., Slafer, G.A., Reynolds, M.P., Royo, C., 2002.
Plant breeding and drought in C3 cereals: what should
we breed for? – Ann. Bot., 89, 925-940.
Cattivelli, L., Baldi P., Crossati C., Di Fonzo N., Faccioli P.,
Grossi M., Mastrangelo A.M., Peccioni N., Stanca, A.M.,
2002. Chromosome regions and stress-related
sequences involved in resistance to abiotic stress in
Triticeae. – Plant Mol. Biol., 48, 649-665.
Cattivelli, L., Rizza F., Badeck F., Mazzucotelli E.,
Mastrangelo A.M., Francia E., Mare C., Tondelli A.,
Stanca A.M., 2008. Drought tolerance improvement in
crop plants: An integrated view from breeding to
genomics. – Field Crops Res., 105, 1-14.
Ceccarelli, S., 1987. Yield potential and drought tolerance
of segregating populations of barley in contrasting
environments. – Euphytica, 36, 1, 265-273.
Ceccarelli, S., Acevedo E. and S. Grando, 1991. Breeding
for Yield Stability in Unpredictable Environments; Single
Traits Interaction Between Traits and Architecture of
Genotypes. – Euphytica, 56: 169-185.
Dhanda, S., Sethi, G. and R. Behl, 2004. Indices of Drought
Tolerance in Wheat Genotypes at Early Stages of Plant
Growth. – Journal of Agronomy and Crop Science, 190,
1, 6-12.
Falconer, D., 1952. The problem of environment and
selection. – Am. Nat. 86: 293-298.
Àâòîðèòå èçêàçâàò áëàãîäàðíîñò íà Ôîíä “Íàó÷íè
èçñëåäâàíèÿ” çà ïðåäîñòàâåíîòî ôèíàíñèðàíå íà
ïðîåêò ÄÎ 02-88/2008.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Àíäîí Âàñèëåâ
E-mail: vassilev@au-plovdiv.bg
Greefing, B., 1956. Concepts of general and specific
combining ability in relation to diallel crossing systems.
– Austral. J. Biol. Sci, 9, 463-493.
Slafer, G., Satorre E.H., Andrade H., 1994. Increases in
grain yield in bread wheat from breeding and associated
physiological changes. – In: Slafer G.A. (Ed.) Genetic
improvement of Field crops. Marcel Dekker. Inc., New
York, pp. 1-67.
Van Ginkel, M., Calhoun, D., Gebeyehu G., Miranda, A.,
Tian-you, C., Pargas Lara, R., Trethowan R., Sayre
K., Crossa, J. and S. Rajaram, 1998. Plant traits related
to yield of wheat in early, late, or continuous drought
conditions. – Euphytica, 100, 1-3, p.109-121.
Voltas, J., Lopez-Corcoles H., Borras G., 2005. Use of biplot
analyses and factorial regression for the investigation
of superior genotypes in multi-environment trials. – Eur.
J. Agron., 22, 309-324.
74
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
75
ÏÐÎÌÅÍÈ Â ÕËÎÐÎÔÈËÍÀÒÀ ÔËÓÎÐÅÑÖÅÍÖÈß ÍÀ ÌËÀÄÈ ÐÀÑÒÅÍÈß ÎÒ ÔÀÑÓË ÏÐÈ ÇÀÑÓØÀÂÀÍÅ
DROUGHT-INDUCED CHANGES IN CHLOROPHYLL FLUORESCENCE OF YOUNG BEAN PLANTS
Çëàòêî Çëàòåâ1*, Àíäîí Âàñèëåâ1, Âàñèëèé Ãîëöåâ2, Ãåîðãè Ïîïîâ1
Zlatko Zlatev1*, Andon Vassilev1, Vasilii Goltsev2, Georgi Popov1
1Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ
2 Ñîôèéñêè óíèâåðñèòåò „Ñâ. Êëèìåíò Îõðèäñêè”, Áèîëîãè÷åñêè ôàêóëòåò, Ñîôèÿ
1Agricultural University - Plovdiv
2St. Kliment Ohridski University of Sofia, Faculty of Biology
*E-mail: zl_zlatev@abv.bg
Ðåçþìå
Ïðîó÷åíî å âëèÿíèåòî íà ïî÷âåíîòî çàñóøàâàíå âúðõó ïàðàìåòðèòå íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ íà
ôîòîñèñòåìà ²² (ÔѲ²) â ìëàäè ðàñòåíèÿ îò ôàñóë (Phaseolus vulgaris L.) îò äâà ñîðòà – „×åð Ñòàðîçàãîðñêè” è „Ëîäè”.
Çàñóøàâàíåòî å ïðèëîæåíî âúðõó äâóñåäìè÷íè ðàñòåíèÿ ÷ðåç ïðåêðàòÿâàíå íà ïîëèâàíåòî çà 10 äíè. Óñòàíîâåíî
å, ÷å çàñóøàâàíåòî ïðåäèçâèêâà ïîâèøàâàíå íà áàçîâàòà (íóëåâàòà) (F0) ôëóîðåñöåíöèÿ è ïîíèæàâàíå íà
ìàêñèìàëíàòà(Fm) è âàðèàáèëíàòà (Fv) ôëóîðåñöåíöèÿ, êàêòî è íà ïàðàìåòúðà Fv/Fm â òúìíèííî àäàïòèðàíè ëèñòà.
 ñâåòëèííî àäàïòèðàíè ëèñòà å óñòàíîâåíî çíà÷èòåëíî ïîíèæåíèå íà êâàíòîâèÿ äîáèâ (Y), ôîòîõèìè÷íîòî ãàñåíå
(qP) è ñêîðîñòòà íà åëåêòðîííèÿ òðàíñïîðò (ETR) âúâ ÔѲ². Âúç îñíîâà íà ïîëó÷åíèòå åêñïåðèìåíòàëíè ðåçóëòàòè
e óñòàíîâåíî, ÷å â ñîðò „×åð Ñòàðîçàãîðñêè” ôîòîñèíòåòè÷íèÿò àïàðàò å ïî-òîëåðàíòåí êúì çàñóøàâàíå, à â ñîðò
„Ëîäè” – ïî-÷óâñòâèòåëåí.
Abstract
The effects of drought on chlorophyll fluorescence characteristics of photosystem II (PSII) in young bean plants
(Phaseolus vulgaris L.) – cv. Lodi and cv. Cher Starozagorski, were studied. Drought conditions were imposed on 2-weekold
plants by withholding water for 10 days. It was found that drought stress increases ground (F0) fluorescence and
decreases maximal (Fm), and variable (Fv) fluorescence, as well as Fv/Fm parameter in dark adapted leaves. In light adapted
leaves a significant decrease in quantum yield (Y), photochemical quenching (qP) and electron transport rate (ETR) of PSII
was occurred. In conclusion, it is considered that in cv. Cher Starozagorski photosynthetic apparatus is more tolerant and
in cv. Lodi photosynthetic apparatus is more sensitive to drought.
Êëþ÷îâè äóìè: ôàñóë, õëîðîôèëíà ôëóîðåñöåíöèÿ, çàñóøàâàíå, ôîòîõèìè÷íî ãàñåíå.
Key words: bean, chlorophyll fluorescence, drought, photochemical quenching.
INTRODUCTION
In the field plants are often exposed to various
environmental stresses. Drought stress is one of the major
causes of crop loss worldwide, reducing average yields for
most major crop plants by more than 50% (Wang et al.,
2003). Under this stress usually a water deficit in plant
tissues develops, thus leading to a significant inhibition of
photosynthesis. The ability to maintain the functionality of
the photosynthetic machinery under water stress, therefore,
is of major importance in drought tolerance. The plant reacts
to water deficit with a rapid closure of stomata to avoid
further loss of water through transpiration (Cornic, 1994),
(Lawlor, 1995). Despite of fact that photosystem II (PSII) is
highly drought resistant under conditions of water stress
photosynthetic electron transport through PS II is inhibited
(Chakir and Jensen, 1999), (Chen and Hsu, 1995). Several
in vivo studies demonstrated that water deficit resulted in
damages to the oxygen evolving complex of PSII (Lu and
Zhang, 1999), (Skotnica et al., 2000) and to the PSII
reaction centers associated with the degradation of D1
protein (Cornic, 1994; He et al.,1995).
In the last years effects of water deficit were
studied on different levels: from ecophysiology to cell
metabolism (Shinozaki and Yamaguchi-Shinogzaki, 1997),
(Dekov et al., 2000). The range and importance of these
effects depend on the genetically determined plant capacity
76
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
and sensitivity, as well as on the intensity and duration of
the stress, when applied alone or in combination (Bhadula
et al., 1998).
The aim of this study was to determine the effects
of drought stress on chlorophyll fluorescence parameters
in leaves of two bean (Phaseolus vulgaris L.) cultivars–cv.
Cher Starozagorski and cv. Lodi.
MATERIAL AND METHODS
Plant material and growth conditions
For this study young bean plants (Phaseolus
vulgaris L.) - cv. Lodi and cv. Cher Starozagorski were used.
Plants were grown as soil culture in the plastic pots,
according the method described previously (Zlatev and
Yordanov, 2005). The measurements were made at the end
of stress period on the first trifoliate leaf, which was fully
matured.
Chlorophyll fluorescence
Chlorophyll fluorescence parameters were
measured using a pulse amplitude modulation chlorophyll
fluorometer MINI-PAM (Walz, Effeltrich, Germany). Minimal
fluorescence, F0, was measured in 60 min dark-adapted
leaves using weak modulated light of < 0.15 μmol m-2 s-1
and maximal fluorescence, Fm, was measured after 0.8 s
saturating white light pulse (>5500 μmol m-2 s-1) in the same
leaves. Maximal variable fluorescence (Fv=Fm–F0) and the
photochemical efficiency of PSII (Fv/Fm) for dark adapted
leaves were calculated. In light adapted leaves steady state
fluorescence yield (Fs), maximal fluorescence (F’m) after
0.8 s saturating white light pulse (> 5500 μmol m-2 s-1) and
minimal fluorescence (F’0) measured when actinic light was
turned off, were determined. Photochemical (qP) and nonphotochemical
(qN) quenching parameters were calculated
according to Schreiber et al. (1986), using the nomenclature
of van Kooten and Snel (1990). The efficiency of electron
transport as a measure of the total photochemical efficiency
of PSII (Y) and the rate of electron transport (ETR) were
calculated according to Genty et al. (1989).
Statistical analysis
Values are the mean ± SE from three consecutive
experiments, each including at least five replications of each
variant. The Student’s t-test was used to evaluate the
differences between control and stressed plants.
RESULTS AND DISCUSSION
Drought stress induces an increase in F0
accompanied by a decrease in Fm and Fv in the first trifoliate
leaf of the studied cultivars, being cv. Cher Starozagorski
less affected (Table 1). An increase in F0 is characteristic
of PSII inactivation, whereas a decline in Fm and Fv may
indicate the increase in a non-photochemical quenching
process at or close to the reaction center (Baker and Horton,
1987).
The Fv/Fm ratio, which characterizes the maximal
quantum yield of the primary photochemical reactions in
dark adapted leaves, was changed significantly in Lodi and
only showed a slight tendency to a decrease in Cher
Starozagorski .
Cv. Lodi presented a decrease of 43% in the
proportion of energy driven to the photosynthetic pathway
(qP) in the firsr trifoliate leaf, while in cv. Cher Starozagorski
qP decreased with 17%. Accordingly, in cv. Lodi Y
decreased strongly with 32%, while in cv. Cher
Starozagorski Y was less affected (Table 2).
By the end of drought period a significant increase
was observed in non-photochemical quenching (qN) in the
leaves of studied cultivars, and thus denoting an increase
in the energy dissipation through non-photochemical
processes.
Concerning electron transport rate (ETR) the
plants from studied cultivars were significantly affected and
presented reduction of 29% (cv. Lodi) and 20% (cv. Cher
Starozagorski).
As Baker and Horton (1987) mentioned, two
distinct phenomena at least, are involved in producing the
changes in the fluorescence parameters under unfavorable
environmental conditions. One phenomenon results in an
Òàáëèöà 1. Ïàðàìåòðè íà õëîðîôèëíà ôëóîðåñöåíöèÿ â òúìíèííî àäàïòèðàíè ëèñòà ïðè êîíòðîëíè è çàñóøåíè
ðàñòåíèÿ îò ôàñóë
Table 1. Parameters of chlorophyll fluorescence in dark adapted leaves of control and drought stressed bean plants
F0 Fm Fv Fv/Fm
cv. Lodi
Control 439±21 2096±93 1657±79 0.791±0.036
Droughted 553±23* (126) 1614±75* (77) 1061±51** (64) 0.657±0.031* (83)
cv. Cher Starozagorski
Control 463±22 2168±96 1705±78 0.786±0.035
Droughted 509±24 (110) 1995±91 (92) 1486±70* (87) 0.746±0.033 (95)
* P<0.5; ** P<0.1
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
77
Òàáëèöà 2. Ïàðàìåòðè íà õëîðîôèëíà ôëóîðåñöåíöèÿ â ñâåòëèííî àäàïòèðàíè ëèñòà ïðè êîíòðîëíè è çàñóøåíè
ðàñòåíèÿ îò ôàñóë
Table 2. Parameters of chlorophyll fluorescence in light adapted leaves of control and drought stressed bean plants
Y qP qN ETR
cv. Lodi
Control 0.526±0.023 0.817±0.036 0.339±0.014 126.2±5.3
Droughted 0.358±0.016** (68) 0.464±0.022** (57) 0.494±0.023** (146) 89.4±4.2** (71)
cv. Cher Starozagorski
Control 0.495±0.024 0.838±0.038 0.355±0.017 140.7±6.6
Droughted 0.399±0.017* (81) 0.695±0.034* (83) 0.426±0.021* (120) 112.3±5.2* (80)
* P<0.5; ** P<0.1
increase in F0, possibly due to the reduced plastoquinone
acceptor (QA
-), being unable to be oxidized completely
because of retardation of the electron flow through PSII
(Yordanov et al., 2003), or to the separation of lightharvesting
Chl a/b protein complexes of PSII from the PSII
core complex (Cona et al., 1995). The second one is
responsible for the quenching both Fv and Fm. Preferential
quenching of Fv would indicate more extensive damage to
the reaction centers, such that charge recombination is
prevented. The drop of Fm may be associated with
processes related to a decrease in the activity of the watersplitting
enzyme complex and perhaps a concomitant cyclic
electron transport within or around PSII (Aro et al., 1993).
Gilmore and Björkman (1995) have pointed out that
increased non-radiative energy dissipation would be
expected to be accompanied by a quenching of Fm.
In the present work the increase of F0 and decrease
of Fm under drought stress occurred concomitantly to a
decrease in Fv/Fm (Table 1) in the studied cultivars. That
seems to indicate, to some extent, the occurrence of chronic
photoinhibition due to photoinactivation of PSII centers,
possibly attributable to D1 protein damage (Campos, 1998).
Photoinhibitory impact over PSII might be occurred in bean
droughted leaves since a given light intensity (even at low
PPFD) is potentially in greater excess under stress
conditions, which usually limit photosynthetic activity.
Indeed, during illumination of Zea mays wilted leaves, a
strong inhibition of PSII efficiency was observed even under
moderate PPFD (Saccardy et al., 1998). Low relative leaf
water content clearly predisposes the leaves to
photoinhibitory damage, and the inhibition of photosynthetic
activity could in fact reflect an inactivation of PSII activity
and the concomitant uncoupling of non-cyclic
photophosphorylation, as shown in Nerium oleander
(Björkman and Powles, 1984). Down-regulation at the PSII
level with inactivation of PSII RCs, progressive
disconnection of the two photosystems with no effect on
the capability of P700 to get oxidized is established under
severe drought stress in H. Rhodopensis (Strasser et al.,
2010). Fv/Fm reflects the maximal efficiency of excitation
energy capture by “open” PSII reaction centers. A decrease
in this parameter indicates down regulation of
photosynthesis or photoinhibition. First trifoliate leaves
showed a slight decrease in this parameter (Table 1). This
is the result of a large proportion of absorbed light energy
not being used by the plants in the photosynthesis process,
as shown by the increase in qN (Table 2).
In the studied cultivars the occurrence of
photoinhibition was further highlighted by the significant
decline of quantum yield of electron transport (Y), which is
a measure of the total photochemical efficiency of PSII
under photosynthetic steady-state conditions.
Photochemical quenching (qP) presented a similar
behaviour to Y (Table 2). This means that under our
experimental conditions, Y is mainly dependent on the
proportion of reaction centers which are photochemically
“open” (expressed by qP), rather than on the efficiency with
which an absorbed photon can reach a reaction centre.
Decreases in Y are associated with increases in excitation
energy quenching in the PSII antennae and are generally
considered indicative of “down-regulation” of electron
transport (Horton et al., 1996). Consequently, the decreases
in Y exhibited during drought in all the species can be taken
as indicative of a physiological regulation of electron
transport by increasing excitation energy quenching process
in the PSII antennae.
Despite the decreases in the photochemical
efficiency of PSII, cv. Cher Starozagorski presented highest
qP and Y, as well as the lowest energy dissipation (qN)
values. Cv. Lodi showed stronger decrease in
photosynthetic capacity under water stress. These
decreases may be due to a direct dehydration effect on
Rubisco (Kaiser, 1987), reflecting an increase in Rubisco
hydrolysis, since the amount of Rubisco largely determines
photosynthesis, and/or a decline in its catalytic ability. In
fact, changes in the ATP pool size (Seeman, 1989), or the
tight binding of inhibitors and failure of the Rubisco activase
to operate in stressed leaves (Lawlor, 2002) will decrease
78
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
enzyme affinity for the substrate, and hence, influence its
activity. Decreases in qP are attributable to either decreases
in the rate of consumption of reductants and ATP produced
from non-cyclic electron transport relative to the rate of
excitation of open PSII reaction centres or damage to PSII
reaction centres. The large drought-induced decreases in
qP in cv. Lodi could to be due to a combination of both of
these factors.
CONCLUSIONS
This study supports the contention that
photodamage to PSII reaction centres is not a primary factor
in the depression of CO2 assimilation of the bean leaves
induced by the water stress. However, photoinhibitory
damage to PSII may be a secondary effect of drought. Our
data are in accordance with the statement of Baker and
Horton (1987) that the bulk of quenching in the stressed
leaves is due to reversible qN processes, since QA was
maintained in a highly reduced state throughout the
quenching. PSII activity in cv. Cher Starozagorski was more
efficiently protected than in the cv. Lodi, as indicated by
fluorescence measurements. In conclusion, cv. Cher
Starozagorski showed a higher drought tolerance in what
concerns photosynthetic activity since Fv/Fm was
maintained, Y and qP were significantly less affected than
in the other cultivar, and it presented a lower increase in
qN.
REFERENCES
Aro, E.M., I. Virgin, B. Andersson, 1993. Photoinhibition of
photosystem II. Inactivation, protein damage and
turnover. – Biochem. Biophys. Acta, 1143: 113-134.
Baker, N.R., P. Horton, 1987. Chlorophyll fluorescence
quenching during photoinhibition. – In: D.J. Kyle, C.B.
Osmond, C.J. Arntzen (Editors.), Photoinhibition,
Elsevier Scientific Publisher, Amsterdam, pp. 85-94.
Bhadula, S.K., G.P. Yang, A. Sterzinger, Z. Ristic, 1998.
Synthesis of a family of 45 kD heat shock proteins in a
drought and heat resistant line of maize under controlled
and field conditions. – J. Plant Physiol., 152: 104-111.
Björkman, O., S.B. Powles, 1984. Inhibition of
photosynthetic reactions under water stress: interaction
with light level. – Planta, 161: 490-504.
Campos, P.S., 1998. Effects of water stress on
photosynthetic performance and membrane integrity in
Vigna spp. The role of membrane lipids in drought
tolerance. – PhD thesis, Universidade Nova de Lisboa,
Lisboa, 136 pp.
Chakir, S., M. Jensen, 1999. How does Lobaria pulmoria
regulate Photosystem II during progressive desiccation
and osmotic water stress? A chlorophyll fluorescence
study at room temperature and at 77 K. – Physiol Plant.,
105: 257–265.
Chen, Y.H., B.D. Hsu, 1995. Effect of dehydration on the
electron transport of Chlorella. An in vivo fluorescence
study. – Photosynth. Res., 46: 295–299.
Cona, A., T. Kuèera, J. Masojídek, B. Geiken, A.K. Mattoo,
M.T. Giardi, 1995. Long-term drought stress symptom:
structural and functional reorganization of photosystem
II. – In: M. Mathis (Editor), Photosynthesis: from light to
biosphere, Vol. IV, Kluwer Academic Publisher,
Dordrecht - London, pp. 521-524.
Cornic, G., 1994. Drought stress and high light effects on
leaf photosynthesis. – In: N.R. Baker, J.R. Boyer
(Editors). Photoinhibition of photosynthesis: from
molecular mechanisms to the field, Bios Scientific
Publishers, Oxford, pp. 297-313.
Dekov, I., T. Tsonev, I. Yordanov, 2000. Effects of water
stress and high-temperature stress on the structure and
activity of photosynthetic apparatus of Zea mays and
Helianthus annuus. – Photosynthetica, 38 (3): 361-366.
Genty, B., J.M. Briantais, N.R. Baker, 1989. The relationship
between the quantum yield of photosynthetic electron
transport and quenching of chlorophyll fluorescence. –
Biochim. Biophys. Acta, 990: 87-92.
Gilmore, A.M., O. Björkman, 1995. Temperature sensitive
coupling and uncoupling of ATPase-mediated,
nonradiative energy dissipation: Similarities between
chloroplasts and leaves. – Planta, 197: 646-654.
He, J.X., J. Wang, H.G. Liang, 1995. Effects of water stress
on photochemical function and protein metabolism of
photosystem II in wheat leaves. – Physiol. Plant., 93:
771-777.
Horton, P., A.V. Ruban, R.G. Walters, 1996. Regulation of
light harvesting in green plants. – Annu. Rev. Plant
Physiol. Plant Mol. Biol., 4: 655-684.
Kaiser, W., 1987. Effects of water deficit on photosynthetic
capacity. – Physiol. Plant., 71: 142-149.
Lawlor, D.W., 1995. Effects of water deficit on
photosynthesis. – In: N. Smirnoff (Editor), Environment
and plant metabolism. – Bios Scientific Publishers Ltd.,
Oxford, pp. 129-160.
Lawlor, D.W., 2002. Limitation of photosynthesis in waterstressed
leaves. Stomatal metabolism and the role of
ATP. – Ann. Bot., 89: 871-885.
Lu, C., J. Zhang, 1999. Effects of waters stress on
Photosystem II photochemistry and its thermostability
in wheat plants. – J. Exp. Bot., 50: 1199-1206.
Saccardy, K., B. Pineau, O. Roche, G. Cornic, 1998.
Photochemical efficiency of photosystem II and
xanthophylls cycle components in Zea mays leaves
exposed to water stress and high light. – Photosynth.
Res., 56: 57-66.
Schreiber, U., U. Schliwa, W. Bilger, 1986. Continuous
recording of photochemical and non-photochemical
chlorophyll fluorescence with a new type of modulation
fluorometer. – Photosynth. Res., 10: 51-62.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
79
Seeman, J.R., 1989. Light adaptation/acclimation of
photosynthesis and the regulation of ribulose-1,5-
bisphospate carboxylase activity in sun and shade
plants. – Plant Physiol., 91: 379-386.
Shinozaki, K., K. Yamaguchi-Shinogzaki, 1997. Gene
expression and signal transduction in water-stress
response. – Plant Physiol., 115: 327-334.
Skotnica, J., M. Matouškova, J. Nauš, D. Lazár, L. Dvoøák,
2000. Thermoluminescence and fluorescence study of
changes in Photosystem II photochemistry in
desiccating barley leaves. – Photosynth. Res., 65: 29–
40.
Strasser, R.J., M. Tsimilli-Michael, S. Qiang, V. Goltsev,
2010. Simultaneous in vivo recording of prompt and
delayed fluorescence and 820 nm reflection changes
during drying and after rehydration of the resurrection
plant Haberlea rhodopensis. – BBA, 1797: 1313–1326.
Van Kooten, O., J.F.H. Snel, 1990. The use of chlorophyll
fluorescence nomenclature in plant stress physiology.
– Photosynth. Res., 25: 147-150.
Yordanov, I., V. Velikova, T. Tsonev, 2003. Plant responses
to drought and stress tolerance. – Bulg. J. Plant
Physiol., Special issue: 187-206.
Wang, W., B.,Vinocur, A. Altman, 2003. Plant responses to
drought, salinity and extreme temperatures: towards
genetic engineering for stress tolerance. – Planta, 218:
1–14.
Zlatev, Z., I. Yordanov, 2005. Effects of soil drought on
photosynthesis and chlorophyll fluorescence in common
bean plants. – Bulg. J. Plant Physiol., 30 (3-4): 3-18.
ACKNOWLEDGEMENTS
We thank the Bulgarian National Science Fund, Project
¹ DO 02-137/15.12.2008 for the financial support.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Íåâåíà Ñòîåâà
E-mail: stoeva_au_bg@yahoo.ca
80
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
81
ÔÈÇÈÎËÎÃÈ×ÅÍ ÒÅÑÒ ÇÀ ÎÖÅÍÊÀ ÍÀ ÃÅÍÎÒÈÏÍÀÒÀ ÒÎËÅÐÀÍÒÍÎÑÒ ÍÀ ÄÎÌÀÒÈ (SOLANUM
LYCOPERSICUM) ÊÚÌ ÂÎÄÅÍ ÑÒÐÅÑ
PHYSIOLOGICAL TEST FOR EVALUATION OF GENOTYPES TOLERANCE OF TOMATO (SOLANUM
LYCOPERSICUM) TO WATER STRESS
Íåâåíà Ñòîåâà1*, Ìàëãîæàòà Áåðîâà1, Çëàòêî Çëàòåâ1, Ìèðîñëàâà Êàéìàêàíîâà1, Ëþáêà Êîëåâà,
Äàíèåëà Ãàíåâà2
Nevena Stoeva1*, Malgorzata Berova1 , Zlatko Zlatev1, Miroslava Kaymakanova1, Lyubka Koleva,
Daniela Ganeva 2
1Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ
2Èíñòèòóò ïî çåëåí÷óêîâè êóëòóðè „Ìàðèöà” – Ïëîâäèâ
1Agricultural University – Plovdiv
2 Institute of Vegetable Crops „Maritza” – Plovdiv
*E-mail: stoeva_au_bg@yahoo.ca
Ðåçþìå
Öåëòà íà èçñëåäâàíåòî áåøå äà ñå ðàçðàáîòè ïîäõîäÿù ôèçèîëîãè÷åí òåñò çà áúðçà è íàäåæäíà äèàãíîñòèêà
íà óñòîé÷èâîñòòà íà ðàñòåíèÿòà êúì âîäåí ñòðåñ è âïîñëåäñòâèå äà ñå îöåíè òîëåðàíòíîñòòà íà íÿêîè ãåíîòèïîâå
ïðè äîìàòè (Solanum lycopersicum). Åêñïåðèìåíòèòå áÿõà ïðîâåäåíè ïðåç ïåðèîäà íà çàñóøàâàíå, êàêòî è ñëåä
îòñòðàíÿâàíå íà ñòðåñà. Îöåíêàòà íà òîëåðàíòíîñòòà íà ðàñòåíèÿòà áåøå èçâúðøåíà ñ ïîìîùòà íà ôèçèîëîãè÷åí
òåñò. Áåøå óñòàíîâåíî, ÷å çàñóøàâàíåòî îêàçâà èíõèáèðàù åôåêò âúðõó ôèçèîëîãè÷íîòî ñúñòîÿíèå íà äîìàòåíèòå
ðàñòåíèÿ. Ïîêàçàòåëèòå ëèñòåí ãàçîîáìåí è õëîðîôèëíà ôëóîðåñöåíöèÿ áÿõà ïîñî÷åíè êàòî îñîáåíî ïîäõîäÿùè
èíäèêàòîðè çà îöåíêà íà òîëåðàíòíîñòòà íà ðàçëè÷íè ãåíîòèïîâå äîìàòè êúì âîäåí ñòðåñ.
Abstract
The purpose of this study was to develop an appropriate physiological test for rapid and reliable diagnosis of plant
resistance to water stress and subsequently to assess the tolerance of some tomato genotypes (Solanum lycopersicum).
Experiments were carried out during the stress period and after its recovery. Valuation of the tolerance of plants was carried
out by means of a physiological test. It was observed that the water stress has an inhibitory effect on the physiological state
of tomato plants. Leaf gas exchange and chlorophyll fluorescence were identified as particularly suitable indicators for
assessing the tolerance of tomato genotypes to water stress.
Êëþ÷îâè äóìè: Solanum lycopersicum, âîäåí ñòðåñ, ôèçèîëîãè÷åí òåñò.
Key words: Solanum lycopersicum, water stress, physiological test.
INTRODUCTION
During their ontogenetic development, plants are
subjected to the unfavorable effect of environmental factors,
water stress being one of the most common of them
(Yordanov et al., 2000). Water stress has a negative effect
on the functional status of plants organisms. It reduces the
functional activity of plants, changes their normal functions
and induces damages leading ultimately to a decrease in
their productivity (Hay and Walker, 1989; Blum, 1996).
One of the promising methods for assessing
drought tolerance of plants is tracking changes in leaf gas
exchange, chlorophyll fluorescence and others (Zlatev et
al., 2003).
The objective of the present research was to offer
a fast and efficient assessment of the tolerance to water
stress of some tomato genotypes with the help of an
appropriate physiological test.
MATERIAL AND METHODS
The studies were conducted with two cultivars
tomato (Solanum lycopersicum). Seeds were surfacetreated
with 1% (w/v) solution of Ca (OCl)2 in 10% (v/v)
ethanol and sown in tarred plastic pods of 5 l. Soil moisture
was raised to 65% of soil humidity and maintained weight.
In each pod were grown in two plants. Plants of each cultivar
82
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
were divided in 2 groups: (1) plants with water regime 65%
of full soil humidity and (2) plants, with water regime 40%
of soil humidity for 10 days period.After drought soil humidity
was restored to a level 65%.
The parameters of the leaf gas exchange were
measured with an infrared analyzer LCA-4 (ADC,
Hoddesdon, England). Chlorophyll fluorescence parameters
were measured using a pulse amplitude modulation
chlorophyll fluoremeter MINI-PAM (Walz, Effeltrich,
Germany). The first leaves over the first bunch were used
for the analyses. The measurements were carried out with
intact plants. The content photosynthetic pigments were
defined spectrophotometrically and calculated by
Lichtenthaler (1983). The water potential was determined
using digital pressure chamber (measure ELE International).
The free proline content in the leaves was determined by
Bates (1973).
Òàáëèöà 1. Ëèñòåí ãàçîîáìåí, õëîðîôèëíà ôëóîðåñöåíöèÿ è âîäåí ñòàòóñ ïðè äîìàòè, ïîäëîæåíè íà âîäåí
ñòðåñ; À - èíòåíçèâíîñò íà ôîòîñèíòåçàòà (μmol ÑÎ2 m-2s-1); Å - èíòåíçèâíîñò íà òðàíñïèðàöèÿòà (mmol m-2s-1);
Ψw – âîäåí ïîòåíöèàë â ëèñòàòà (Bar); Proline - ñúäúðæàíèå íà ïðîëèí (mg.g-1 fresh weight); Fv/Fm - âàðèàáèëíà/
ìàêñèìàëíà ôëóîðåñöåíöèÿ
Table 1. Leaf gas exchange, chlorophyll fluorescence and water status in tomato plants exposed to water stress;
À - intensity of photosynthesis (μmol ÑÎ2 m-2s-1); Å – transpiration (mmol m-2s-1), Ψw – leaf water potential (Bar), Proline
- content of proline (mg.g-1 fresh weight), Fv/ Fm - maximum/variable fluorescence
Показатели
Parameters
Период на засушаване
Drought period
Възстановяване
Recovery
Control Drought-stressed Control Drought-stressed
cv. Marty
А 13.35±0.42 7.62±0.38** (57%) 13.88±0.52 11.40±0.25* (82%)
Е 2.36±0.32 1.15±0.06* (48%) 2.88±0.12 2.45±0.11 (85%)
A/E 5.65 6.62 (117%) 4.81 4.65 (97%)
Ψw -15.3 -23.7* (155%) -17.3 -20.1* (116%)
Proline 0.535±0.02 0.774±0.05** (144%) 0.610±0.02 0.650±0.08* (106%)
Fv/ Fm 0.811±0.045 0.732±0.048* (90%) 0.792±0.05 0.738±0.06* (92%)
cv. Yana
А 14.59±0.65 7.45±0.62** (51%) 15.44±0.15 12.12±0.33* (78%)
Е 2.79±0.33 1.16±0.44 * (41%) 2.95±0.22 2.66±0.25 (90%)
A/E 5.22 6.42** (122%) 5.23 4.55* (87%)
Ψ -16.7 -25.3* (151%) -16.3 -19.3* (118%)
Pro 0.485±0.04 0.725±0.03* (149%) 0.500±0.05 0.608±0.02* (121%)
Fv/ Fm 0.8310±0.047 0.640±0.045* (77%) 0.790±0.040 0.737±0.058 (93%)
The results were statistically processed. The
authenticity of the differences was determined according
to the criterion t of Student.
RESULTS
One of the primary physiological consequences
of drought is photosynthesis and transpiration inhibition
(Chaves, 1991; Shanggaun et al., 2000). The reduced CO2
diffusion from the atmosphere to the site of carboxylation
in the leaf, as results of both stomata closure and reduced
mesophyll conductance, is the main cause of decreased
photosynthesis under water stress conditions (Chaves and
Oliviera, 2004). The data presented in Tables 1 show that
after ten-day drought period, the leaf gas exchange rate in
the plants of both genotypes was significantly reduced. In
cv. Yana, A and E were reduced to a greater extant than in
cv. Marty. The photosynthetic use efficiency, expressed as
the A/E ratio, increased significantly in both genotypes. After
* P ‹ 0.05; ** P ‹ 0.01
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
83
Òàáëèöà 2. Ñúäúðæàíèå íà ôîòîñèíòåòè÷íè ïèãìåíòè (mg. g-1 ñâ. òåãëî) â ðàñòåíèÿ îò äîìàòè, ïîäëîæåíè íà
âîäåí ñòðåñ
Table 2. Content of photosynthetic pigments (mg.g-1 fresh weight) in tomato plants exposed to water stress
Показатели
Parameters
Период на засушаване
Drought period
Възстановяване
Recovery
Control Drought-stressed Control Drought-stressed
cv. Marty
Chlorophyll a 2,37±0,01 1,74±0,10** (73%) 2,86±0,42 2,33±0,11* (81%)
Chlorophyll b 0,73±0,01 0,64±0,00 (87%) 0,81±0,07 0,73±0,01 (90%)
Carotenoids 0,69±0,02 0,65±0,00 (94%) 0,70±0,03 0,88±0,02 (125%)
Chl a/ Chl b 3,24±0,08 2,71±0,38 (83%) 3,51±0,09 3,40±0,09 (97%)
Chl a+ Chl b
/carotenoids
4,29±0,39 3,88±0,01 (90%) 5,22±0,42 5,31±0,14 (101%)
cv. Yana
Chlorophyll a 2,07±0,09
1,64±0,02* (79%)
3,42±0,04 2,96±0,00* (86%)
Chlorophyll b 0,64±0,03 0,61±0,02 (95%) 0,97±0,02
0,88±0,02 (91%)
Carotenoids 0,68±0,01 0,63±0,00 (93%) 0,70±0,01 0,86±0,00* (122%)
Chl a/ Chl b 3,27±0,20 2,88±0,43 (88%) 3,99±0,20 3,62±0,21 (91%)
Chl a+ Chl b
/carotenoids
4,97±0,13 4,78±0,19 (96%) 4,33±0,09 4,86±0,05 (112%)
* P ‹ 0.05; ** P ‹ 0.01
the recovery from the stress A and E in the plants of both
cultivars largely recovered.
By the end of the drought period, the plants of
tested genotypes showed similar response in terms of water
potential. The ψw reduction was more than 50% in both
cultivars. After recovery for 10 days period ψw was 16-18%
above the control plants. The changes in ψw were probably
due to some structural and functional changes, ensuring
plant adaptation to the drought treatment (Paleg et al.,
1984).
The accumulation of obsolete compounds (e.g.
prîline) in the cells as a result of water stress is often
associated with a possible mechanism to tolerate the
harmful effect of water stress (Turner and Jones, 1980).
After the drought period in tomato leaves (cv. Marty and
cv. Yana) were observed substantial accumulation of proline
(44-49% above the control). After the recovery from the
stress a greater proline content was established in Yana.
Chlorophyll fluorescence measurements have been
widely used to determine the plant response behavior to
environmental stress conditions (water, temperature,
salinity, heavy metal stress etc.) (Glynn et al., 2003). In
dark-adapted leaves, the ratio Fv/Fm is a parameter for the
potential PS2 efficiency in the photochemical reactions
(Ranjbarfordoei et al., 2006). It is known that in healthy
leaves this ratio is in the range of 0.75-0.85 (Bolhar-
Nordenkampf and Oquist, 1993). Stress factors, affecting
mainly PS2 function, reduce the value of this ratio (Krause
and Weis, 1991). The significant Fv/Fm decrease in the plants
of cv. Yana subjected to water stress (by 23%) was
indicative of PS2 disturbances. The plants of cv. Marty
maintained that ratio at a higher level. This demonstrated
the higher tolerance of their photosynthetic apparatus to
water stress.
The photosynthetic pigments are one of the internal
factors which can limit the photosynthetic activity to a large
extent. It is proven that the reduction of the pigment
concentration is an indicator of stress in cases as water
and temperature stress, insufficiency or excess of mineral
elements, etc. (Hendry and Grime, 1993). The data from
Table 2 show that water stress cause disturbances in the
photosynthetic apparatus in both genotypes. As a result of
their influence the content of chlorophyll a in the leaves of
the studied plants is reduced by 21-27%. The content of
84
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
chlorophyll b following the same tendency. According Kaiser
(1982) reduced photosynthetic pigments is due of
disturbances of their biosynthesis and the enhanced
destructive processes.
CONCLUSION
On the basis of the conducted studies the following
conclusions can be drawn:
1. Leaf gas exchange and chlorophyll fluorescence are
particularly suitable indicators for assessing the tolerance
of tomato genotypes to water stress. Since these
measurements are non-destructive, fast and reliable, this
makes them an attractive tool for environmental research
purposes.
2. On the basis of the presented data we can conclude that
the plants of cv. Marty are more tolerant to the applied water
stress compared with cv. Yana.
REFERENCES
Bates, L., R. Waldren, J. Teare, 1973. Rapid determination
of proline for water stress studies. - Plant Soil. 39: 205-
207.
Blum, A., 1996. Crop responses of drought and the
interpretation of adaptation. - Plant Growth Regul.
20:135-148.
Bolhar-Nordenkampf, H. and G. Oquist, 1993. Chlorophyll
fluorescence as a tool in photosynthesis research. – In:
Photosynthesis and production in a changing
environment: A field and laboratory manual (Eds. D. hall,
J.Scurlock, H. Bolhar-Nordenkampf, R. Leegood, S.
Long) Chapman and Hall, London, 193-205.
Chaves, M., 1991. Effects of water deficits on carbon
assimilation. – J. Exp. Bot., 42:1-16.
Chaves, M. and M. Oliviera, 2004. Mechanisms underlying
plant resilience to water deficits: prospects for watersaving
agriculture. – J. Exp. Bot., 55: 2365-2384.
Glynn, C.P., A.F. Gollian, O. Gavin, 2003. Foliar salt
tolerance of Acer genotypes using chlorophyll
fluorescence. – J. Arboricult, 29:61-65.
Hay, R. and A. Walker, 1989. An Introduction to the
Physiology of Crop Yield. Longman Scientific and
Technical, Harlow.
Hendry, G. and J. Grime (eds), 1993. Methods in
comparative plant ecology. Chapman and Hall, The
Hague.
Kaiser, W., 1982. Correlation between changes in
photosynthetic activity and changes in total protoplast
volume in leaf tissue hydro-, meso- and xerophytes
under osmotic stress. - Planta, 154, 538-545.
Krause, G. and E. Weis, 1991. Chlorophyll fluorescence
and photosynthesis. The Basis. - Ann. Rev. Plant
Physiol. Plant Mol. Bio., 42, 313.
Lichtenthaler, Í. and À. Welburn, 1983. Deteãmination of
total carotenoids and chlorophylls (à and b) of leaf
extracts in different solvents. - Biochem. Soc. Tãans.
Àñ., 603, 591-592.
Paleg, L., G. Steward, J. Bradbeer, 1984. Proline and glycine
betaine influence protein solvation. – Plant Physiol.,
75:52-58.
Ranjbarfordoei, A., R. Samson., P. Van Dame, 2006.
Chlorophyl Fluorescence performance of sweet almond
[Prunus dulcis(Miller) D.Webb] in response to salinity
stress indused by NaCl. – Photosynthetica, 44(4): 513-
522.
Shanggaun, Z., M.G. Shao, J. Dyckmans, 2000. Effects of
nitrogen nutrition and water deficit on net photosynthetic
rate and chlorophyll fluorescence in winter wheat. – J.
Plant Physiol., 156: 46-51.
Turner, NC. and MM. Jones, 1980. Turgor maintenance by
osmotic adjustment: a review and evaluation. –In: Turner
NC, Kramer PJ (eds) Adaptation of plants to water and
high temperature stress. - Wiley-Interscience, New York,
pp 87-103.
Yordanov, I., V. Velikova, T. Tsonev, 2000. Plant responses
to drought, acclimation, and stress tolerance. –
Photosyntetica, 38 (1):171-186.
Zlatev, Z., M. Berova, N. Stoeva, A. Vasilev, 2003. Use of
physiological parameters as stress indicators. – Journal
of Environmental Protection and Ecology, 4 (4): 841-
849.
Acknowledgements
We thank the Bulgarian National Science Fund, Project
¹ DO 02-88/2008 for the financial support.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Àíäîí Âàñèëåâ
E-mail: vassilev@au-plovdiv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
85
ÂËÈßÍÈÅ ÍÀ ÏÎ×ÂÅÍÎÒÎ ÇÀÑÓØÀÂÀÍÅ ÂÚ ÔÅÍÎÔÀÇÀ ÖÚÔÒÅÆ–ÏËÎÄÎÎÁÐÀÇÓÂÀÍÅ ÂÚÐÕÓ
ÏÐÎÄÓÊÒÈÂÍÎÑÒÒÀ ÍÀ ÒÐÈ ÑÎÐÒÀ ÏÀÌÓÊ
INFLUENCE OF SOIL DROUGHT DURING FLOWERING-BOLL FORMATION STAGE ON THE PRODUCTIVITY OF
THREE COTTON CULTIVARS
Ìèíêà Êîëåâà1*, Àíäîí Âàñèëåâ2
Minka Koleva1*, Andon Vassilev2
1 Èíñòèòóò ïî ïàìóêà è òâúðäàòà ïøåíèöà – ×èðïàí
2 Àãðàðåí óíèâåðñèòåò – Ïëîâäèâ
Cotton and Durum Wheat Research Institute – Chirpan
2Agricultural University – Plovdiv
*E-mail: m_koleva2006@abv.bg
Ðåçþìå
Ïðîó÷åíî å âëèÿíèåòî íà ïî÷âåíîòî çàñóøàâàíå âúâ ôàçà öúôòåæ–ïëîäîîáðàçóâàíå âúðõó ïðîäóêòèâíîñòòà
íà òðè ñîðòà ïàìóê – „Õåëèóñ”, „Àâàíãàðä-264” è „×èðïàí-539”. Óñòàíîâåíî å, ÷å ïî÷âåíîòî çàñóøàâàíå â ñòåïåí 35-
40% îò ïúëíàòà ïîëñêà âëàãîåìíîñò (ÏÏÂ) èíõèáèðà ðàñòåæà, èíäóöèðà îêàïâàíå íà çàâðúçèòå è íàìàëÿâàíå íà
áðîÿ è ìàñàòà íà êóòèéêèòå â åäíî ðàñòåíèå. Ñðåäíîòî íàìàëåíèå íà ïðîäóêòèâíîñòòà å â ãðàíèöèòå íà 23-35%.
Ñúùåñòâåíè ñîðòîâè ðàçëè÷èÿ ïî îòíîøåíèå íà òîëåðàíòíîñòòà êúì çàñóøàâàíå íå ñà äîêàçàíè.
Abstract
The influence of drought during the flowering-boll formation stage on the productivity of three cotton cultivars -
Helius, Avangard-264 and Chirpan-539 was studied. It was established that soil drought at the rate of 35-40% of the field
water capacity (FWC) suppressed the growth, caused falling off of the formed bolls and reduced both the number and
weight of bolls. The average reduction of the productivity was in the range of 23-35%. No significant cultivar differences
regarding tolerance to drought were established.
Êëþ÷îâè äóìè: ïàìóê, çàñóøàâàíå, âîäåí ñòðåñ, òîëåðàíòíîñò, ïðîäóêòèâíîñò.
Key words: cotton, drought, water stress, tolerance, productivity.
ÂÚÂÅÄÅÍÈÅ
Ïàìóêúò å îñíîâíàòà âëàêíîäàéíà êóëòóðà â
íàøàòà ñòðàíà, êîÿòî òðàäèöèîííî ñå îòãëåæäà ïðè
íåïîëèâíè óñëîâèÿ. Òåíäåíöèÿòà êúì ïîâèøàâàíå íà
òåìïåðàòóðèòå è íàìàëÿâàíå íà ïî÷âåíàòà è
àòìîñôåðíàòà âëàæíîñò ïðåç ïîñëåäíèòå ãîäèíè å åäíà
îò îñíîâíèòå ïðè÷èíè çà ïîëó÷àâàíåòî íà ñðàâíèòåëíî
íèñêè äîáèâè ñ âëîøåíî êà÷åñòâî íà âëàêíîòî. Òîâà
ìîòèâèðà íåîáõîäèìîñò îò ñúçäàâàíå íà òîëåðàíòíè
êúì çàñóøàâàíå ãåíîòèïîâå.
Òîëåðàíòíîñòòà íà ðàñòåíèÿòà êúì çàñóøàâàíå
å ïðèçíàê ñúñ ñëîæíà ïðèðîäà, êîåòî çàòðóäíÿâà
ïîäáîðà è öåëåíàñî÷åíîòî ñúçäàâàíå íà ñóõîóñòîé÷èâ
èçõîäåí ìàòåðèàë. Íåîáõîäèìè ñà êîìïëåêñíè
èçñëåäâàíèÿ âúðõó òîëåðàíòíîñòòà íà ïàìóêà êúì
çàñóøàâàíå. Ó íàñ èçñëåäâàíèÿòà â ïîñî÷åíèÿ àñïåêò
ñà îãðàíè÷åíè, çíà÷èòåëíî ïîâå÷å å ïðîó÷åíà ðåàêöèÿòà
íà ïàìóêà êúì íàïîÿâàíå (Íèêîëîâ, 1984).
Ðåàêöèÿòà íà ïàìóêà êúì çàñóøàâàíå ìîæå äà
áúäå äîáðå ïðîó÷åíà ÷ðåç êîìïëåêñíè ôèçèîëîãè÷íè
èçñëåäâàíèÿ, âêëþ÷âàùè ïàðàìåòðè íà âîäîîáìåíà,
ëèñòíèÿ ãàçîâ îáìåí, ðàñòåæà è ïðîäóêòèâíîñòòà. Â
íàñòîÿùàòà ñòàòèÿ ñå ðàçãëåæäàò ïðîìåíèòå â ðàñòåæà
è ñòðóêòóðíèòå åëåìåíòè íà ïðîäóêòèâíîñòòà íà òðè
ñîðòà ïàìóê, ïîäëîæåíè íà çàñóøàâàíå âúâ ôàçà
öúôòåæ–ïëîäîîáðàçóâàíå.
ÌÀÒÅÐÈÀË È ÌÅÒÎÄÈ
Ñúäîâèòå îïèòè ñà ïðîâåäåíè â Èíñòèòóòà ïî
ïàìóêà è òâúðäàòà ïøåíèöà â ×èðïàí â ïåðèîäà 2007-
2009 ã. Åêñïåðèìåíòàëíàòà ïîñòàíîâêà íà îïèòèòå
âêëþ÷âà äâà ôàêòîðà: (A) âîäåí ðåæèì; (B) ñîðò.
Ôàêòîðúò âîäåí ðåæèì å ïðåäñòàâåí â äâå ñòåïåíè –
(1) îïòèìàëåí âîäåí ðåæèì – 70-75% îò ÏÏÂ, è (2)
çàñóøàâàíå – 35-40% îò ÏÏÂ, à âêëþ÷åíèòå ñîðòîâå ñà
òðè – „Õåëèóñ”, „Àâàíãàðä-264” è „×èðïàí-539”. Âñåêè
86
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
âàðèàíò å çàëîæåí â 7 ïîâòîðåíèÿ (ñúä òèï Âàãíåð).
Ñëåä ïîíèêâàíåòî âúâ âñåêè ñúä ñà îñòàâåíè ïî äâå
ðàñòåíèÿ, êîèòî ñà îòãëåäàíè äî êðàÿ íà âåãåòàöèÿòà.
Ïî÷âåíàòà âëàæíîñò å êîíòðîëèðàíà ÷ðåç ïåðèîäè÷íî
ïðåòåãëÿíå íà ñúäîâåòå è äîáàâÿíå íà íåîáõîäèìîòî
êîëè÷åñòâî âîäà. Çàñóøàâàíåòî å ïðèëîæåíî âúâ ôàçà
íà÷àëî íà öúôòåæ–ïëîäîîáðàçóâàíå, êîÿòî å êðèòè÷íà
ïî îòíîøåíèå íà äîáèâà (Äèìèòðîâà, 1970; Íèêîëîâ,
1984). Òî å îñúùåñòâåíî ïî ñõåìàòà: (1) ïðåóñòàíîâÿâàíå
íà ïîëèâêèòå äî äîñòèãàíå íà ïî÷âåíà âëàæíîñò
35-40% îò ÏÏÂ; (2) ïîääúðæàíå íà òàçè âëàæíîñò â
ïðîäúëæåíèå íà 7 äíè; (3) âúçñòàíîâÿâàíå íà
îïòèìàëíàòà ïî÷âåíà âëàæíîñò 70-75% îò ÏÏÂ.
Âëèÿíèåòî íà çàñóøàâàíåòî âúðõó òðèòå ñîðòà ïàìóê å
îïðåäåëåíî ïî ëèíåéíèÿ ðàñòåæ íà ãëàâíîòî ñòúáëî,
îïàäâàíåòî íà çàâðúçèòå è ïðîäóêòèâíîñòòà –
êîëè÷åñòâîòî íåîìàãàíåí ïàìóê. Ïîëó÷åíèòå ðåçóëòàòè
ñà îáðàáîòåíè ÷ðåç äâóôàêòîðåí äèñïåðñèîíåí àíàëèç.
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
Ïðèëîæåíîòî ïî÷âåíî çàñóøàâàíå âúâ
ôåíîôàçà íà÷àëî íà öúôòåæ–ïëîäîîáðàçóâàíå
çíà÷èòåëíî è äîñòîâåðíî (P≤0.001) íàìàëÿâà
ïðîäóêòèâíîñòòà íà ñîðòîâåòå ïàìóê „Õåëèóñ”,
„Àâàíãàðä-264” è „×èðïàí-539” ïðåç òðèòå ãîäèíè íà
èçñëåäâàíåòî (òàáëèöà 1). Ñðåäíîòî íàìàëÿâàíå íà
êîëè÷åñòâîòî íà íåîìàãàíåíèÿ ïàìóê îò ñúä å â
ãðàíèöèòå 23,4-34,8%, êàòî íàé-çíà÷èòåëíî å
ïîíèæåíèåòî ïðè ñîðòà „Àâàíãàðä-264”. Íåçàâèñèìî îò
Òàáëèöà 1. Âëèÿíèå íà ïî÷âåíîòî çàñóøàâàíå âúâ ôåíîôàçà öúôòåæ–ïëîäîîáðàçóâàíå âúðõó ïðîäóêòèâíîñòòà
íà ïàìóêà (êîëè÷åñòâî íåîìàãàíåí ïàìóê/ñúä)
Table 1. Influence of soil drought during flowering-boll formation stage on cotton productivity (quantity of seedcotton g
per pot)
Сорт
Cultivar
Воден режим
Water regime
Продуктивност (g/съд) / Productivity (g/pot) % спрямо
контролата
% of control 2007 г. 2008 г. 2009 г. Средно
Хелиус
Helius
70-75 % ППВ / FWC 39,8 58,1 42,6 46,8
75,0
35-40 % ППВ / FWC 30,0 41,1 34,1 35,1
Авангард-264
Avangard-264
70-75 % ППВ / FWC 44,5 63,4 56,0 54,6
65,2
35-40 % ППВ / FWC 30,1 45,6 31,1 35,6
Чирпан-539
Chirpan-539
70-75 % ППВ / FWC 40,0 50,1 48,0 46,0
76,6
35-40 % ППВ / FWC 26,4 45,5 33,7 35,2
Фактор А – Воден режим
Factor A - Water regime
*** *** *** ***
Фактор В – Сорт
Factor B - Cultivar
ns ns ns *
А×В ns ns * ns
* P ≤ 5.0 % ** P ≤ 1.0 % *** P ≤ 0.1 %
êîíòðîëèðàíèÿ âîäåí è ìèíåðàëåí ðåæèì ñå íàáëþäàâà
èçâåñòíî âàðèðàíå â àáñîëþòíèòå ñòîéíîñòè íà
ïðîäóêòèâíîñòòà íà ñîðòîâåòå ïðåç òðèòå îïèòíè ãîäèíè,
êîåòî ìîæå äà ñå îáÿñíè ñ ðàçëèêèòå â òåìïåðàòóðàòà
è àòìîñôåðíàòà âëàæíîñò. Ïîëó÷åíèòå ðåçóëòàòè çà
íàìàëåíàòà ïðîäóêòèâíîñò íà ïàìóêà êîðåñïîíäèðàò ñ
óñòàíîâåíèòå îò äðóãè àâòîðè (Êàðèìîâà, 2009), êîèòî
ãè ñâúðçâàò ñ íåãàòèâíèòå åôåêòè íà ïî÷âåíîòî
çàñóøàâàíå âúðõó ôèçèîëîãè÷íèòå ïðîöåñè â
ïàìóêîâèòå ðàñòåíèÿ. Òîâà ñå óñòàíîâè è â íàøèòå
îïèòè, â êîèòî ñêîðîñòòà íà ôîòîñèíòåçàòà â çàñóøåíèòå
ðàñòåíèÿ áåøå ñèëíî ïîòèñíàòà (äàííèòå íå ñà
ïðåäñòàâåíè). Íàïðàâåíèÿò äâóôàêòîðåí äèñïåðñèîíåí
àíàëèç íà ðåçóëòàòèòå ïîêàçà, ÷å ôàêòîðúò, ëèìèòèðàù
ïðîäóêòèâíîñòòà íà ïàìóêà â èçïîëçâàíàòà
åêñïåðèìåíòàëíà ïîñòàíîâêà, å âîäíèÿò ðåæèì – ôàêòîð
À (P≤0.001). Âëèÿíèåòî íà ñîðòà (ôàêòîð Â) íå å
äîêàçàíî è ïðåç òðèòå îïèòíè ãîäèíè. Òîçè ôàêò â
èçâåñòíà ñòåïåí ìîæå äà ñå îáÿñíè ñ ïðèëîæåíîòî
ñèëíî ïî÷âåíî çàñóøàâàíå (35-40% îò ÏÏÂ), ïðè êîåòî
ñúçäàäåíèÿò âîäåí ñòðåñ âåðîÿòíî íàäâèøàâà
êàïàöèòåòà íà òîëåðàíòíîñò íà òðèòå ñîðòà ïàìóê.
 òàáëèöà 2 ñà ïðåäñòàâåíè ðåçóëòàòè çà
åôåêòèòå íà çàñóøàâàíåòî âúðõó âèñî÷èíàòà íà
ðàñòåíèÿòà, ïðîöåíòà íà îïàäâàíå íà çàâðúçèòå è
îñíîâíèòå ñòðóêòóðíè åëåìåíòè íà ïðîäóêòèâíîñòòà.
Ïðåäñòàâåíè ñà ñàìî äàííèòå îò îïèòà ïðåç 2009 ã., íî
òå ñà åäíîïîñî÷íè ñ òåçè îò îñòàíàëèòå äâå ãîäèíè è ñà
ïðåäñòàâèòåëíè çà öåëèÿ ïåðèîä íà èçñëåäâàíå.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
87
Òàáëèöà 2. Âëèÿíèå íà ïî÷âåíîòî çàñóøàâàíå âúâ ôåíîôàçà öúôòåæ–ïëîäîîáðàçóâàíå âúðõó âèñî÷èíàòà íà
ïàìóêîâîòî ðàñòåíèå, îïàäâàíåòî íà çàâðúçèòå è ñòðóêòóðíèòå åëåìåíòè íà ïðîäóêòèâíîñòòà
Table 2. Influence of soil drought during flowering-boll formation stage on height of cotton plant, felt off of formed bolls
and structural productivity components
Воден режим
Water regime
Височина, cm
Height, cm
Опадване на завръзи
Felt off of formed bolls,
%
Eлементи на
продуктивността
Productivity
components
Преди засушаване
Before drought
По време на стресa
During the stress
След възстановяване
After recovery
При узряване
At maturation
Преди засушаване
Before drought
По време на стреса
During the stress
Брой кут. от 1 раст.
Bolls per plant
Маса на 1 кут., g
Maas of one boll, g
Сорт Хелиус/Cv. Helius
70-75% ППВ / FWC 65,1 74,6 78,4 86,9 19,0 16,4 4,3 5,4
35-40% ППВ / FWC - 73,6 78,8 87,1 - 38,0 3,6 4,7
Сорт Авангард-264/Cv. Avangard-264
70-75% ППВ / FWC 68,6 78,4 84,0 87,1 28,3 7,7 5,6 5,5
35-40% ППВ / FWC - 73,9 80,5 88,6 - 42,5 3,5 4,4
Сорт Чирпан-539/Cv. Chirpan-539
70-75% ППВ / FWC 63,9 74,2 76,4 83,4 18,6 11,3 4,9 5,2
35-40% ППВ / FWC - 70,3 74,9 84,6 - 31,2 4,1 4,1
Ïî ïðèíöèï ïðîìåíèòå, êîèòî íàñòúïâàò â
ðàñòåíèÿòà ïðè ñòðåñ, çàâèñÿò îò ñèëàòà è
ïðîäúëæèòåëíîñòòà íà íåáëàãîïðèÿòíîòî âúçäåéñòâèå
è îò ñïîñîáíîñòòà íà ñîðòà äà ñå àäàïòèðà è áúðçî äà
ñå âúçñòàíîâÿâà. Ïî ïðèíöèï íàé-õàðàêòåðíèÿò
íåãàòèâåí åôåêò íà çàñóøàâàíåòî å ïîòèñêàíåòî íà
ðàñòåæà íà ðàñòåíèÿòà. McMichael and Hesketh (1982)
ïîñî÷âàò, ÷å çàñóøàâàíåòî íàìàëÿâà ðàñòåæà è
ôîðìèðàíåòî íà ëèñòíàòà ïëîù íà ïàìóêà. Òåçè åôåêòè
áÿõà óñòàíîâåíè è â íàøèòå îïèòè, â êîèòî íàðàñòâàíåòî
íà ãëàâíîòî ñòúáëî â ðàñòåíèÿòà îò çàñóøåíèòå
âàðèàíòè áåøå îãðàíè÷åíî.  êðàÿ íà ïåðèîäà íà
çàñóøàâàíå âèñî÷èíàòà íà ãëàâíîòî ñòúáëî â
ðàñòåíèÿòà îò ñîðòîâåòå „Àâàíãàðä-264”, „Õåëèóñ” è
„×èðïàí-539” äîñòèãíà ñúîòâåòíî 73,9, 73,6 è 70,3 cm,
ñòîéíîñòè, êîèòî ñà ñ 4,5, 1,0 è 3,0 cm ïî-ìàëêè îò òåçè
íà êîíòðîëíèòå ðàñòåíèÿ. Íàðåä ñ ïî-íèñêàòà âèñî÷èíà
ðàñòåíèÿòà îò çàñóøåíèòå âàðèàíòè ñå îòëè÷àâàõà ñ ïîìàëêà
ëèñòíà ïëîù ïîðàäè îãðàíè÷åíèÿ ðàñòåæ íà
ëèñòàòà è çàñèëåíîòî îïàäâàíå íà ëèñòàòà. Íåîáõîäèìî
å äà ñå îòáåëåæè ñúùî, ÷å ñëåä âúçñòàíîâÿâàíå íà
îïòèìàëíàòà ïî÷âåíàòà âëàæíîñò òåìïúò íà íàðàñòâàíå
íà çàñóøåíèòå ðàñòåíèÿ ñå ïîâèøè è ïðåâèøè òîçè íà
êîíòðîëíèòå ðàñòåíèÿ, â ðåçóëòàò íà êîåòî â êðàÿ íà
âåãåòàöèÿòà äâåòå ãðóïè ðàñòåíèÿ íå ñå ðàçëè÷àâàõà
ñúùåñòâåíî ïî õàáèòóñ. Òîâà ïîêàçâà âèñîêàòà
òîëåðàíòíîñò íà ñîðòîâåòå ïàìóê êúì çàñóøàâàíå è
ìîæå äà ñå îáÿñíè ñ íàëè÷èåòî íà êîìïåíñàòîðíè
ìåõàíèçìè.
Èçâåñòíî å, ÷å êîãàòî âîäíèÿò ñòðåñ ñúâïàäíå
ñ ôîðìèðàíåòî íà ðåïðîäóêòèâíèòå îðãàíè, äîáèâúò îò
ïàìóêà ñèëíî íàìàëÿâà ïîðàäè îïàäâàíå íà çàâðúçèòå
è ïîòèñêàíå íà íàðàñòâàíåòî íà êóòèéêèòå (Grimes and
Yamada, 1982). Ïðåäè çàñóøàâàíåòî îò÷åòåíèÿò èíäåêñ
íà îïàäâàíå íà çàâðúçèòå âàðèðà â ãðàíèöèòå 18,6-
28,3%. Ïî âðåìå íà çàñóøàâàíåòî òîçè ïðîöåíò ñå
ïîâèøàâà è å â ãðàíèöèòå ìåæäó 31,2% è 42,5%, êîåòî
ñúùåñòâåíî íàäâèøàâà ñúîòâåòíèÿ ïðîöåíò ïðè
êîíòðîëíèòå ðàñòåíèÿ.
Áðîÿò è ìàñàòà íà ðåêîëòèðàíèòå êóòèéêè ñà
íàé-âàæíèòå ñòðóêòóðíè åëåìåíòè, îïðåäåëÿùè
ïðîäóêòèâíîñòòà íà ïàìóêà. Ðåçóëòàòèòå â òàáëèöà 2
ïîêàçâàò, ÷å çàñóøåíèòå âàðèàíòè ïðè òðèòå ñîðòà ñå
îòëè÷àâàò ñ ðåäóöèðàí áðîé è òåãëî íà ðåêîëòèðàíèòå
88
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
êóòèéêè îò åäíî ðàñòåíèå. Â íàé-âèñîêà ñòåïåí å
ðåäóöèðàí áðîÿò íà êóòèéêèòå ïðè ñîðòà „Àâàíãàðä-264”
– ñ 36,5%, êîåòî êîðåñïîíäèðà ñ èäåíòè÷íî íàìàëÿâàíå
íà ïðîäóêòèâíîñòòà (òàáëèöà 1). Òåãëîòî íà åäíà êóòèéêà
ñúùî å íàìàëåíî, êàòî ïîíèæåíèåòî å íàé-ñëàáî ïðè
ñîðòà „Õåëèóñ” – 13,0%, à ïðè „Àâàíãàðä-264” è „×èðïàí-
539” å ñðåäíî îêîëî 20,0%.
ÈÇÂÎÄÈ
Ïî÷âåíîòî çàñóøàâàíå (35-40% îò ÏÏÂ) âúâ
ôàçà öúôòåæ–ïëîäîîáðàçóâàíå ïðåäèçâèêâà
çíà÷èòåëíî èíõèáèðàíå íà ðàñòåæà, óâåëè÷àâà
îïàäâàíåòî íà çàâðúçèòå è íàìàëÿâà áðîÿ è ìàñàòà íà
êóòèéêèòå â ðàñòåíèÿòà îò ñîðòîâåòå ïàìóê „Õåëèóñ”,
„Àâàíãàðä-264” è „×èðïàí-539”.  ðåçóëòàò íà
íåãàòèâíîòî âúçäåéñòâèå ñúùåñòâåíî ñå ïîíèæàâà
ïðîäóêòèâíîñòòà íà òðèòå ñîðòà ïàìóê (P≤0.1%). Â íàéâèñîêà
ñòåïåí ïî÷âåíîòî çàñóøàâàíå íàìàëÿâà
ïðîäóêòèâíîñòòà íà ñîðòà „Àâàíãàðä-264” (ñ 34,8%),
êîåòî êîðåñïîíäèðà ñ èäåíòè÷íî ïîíèæàâàíå íà áðîÿ
íà êóòèéêèòå â åäíî ðàñòåíèå (ñ 36,5%). Ïîðàäè
íåäîêàçàíèÿ ñòàòèñòè÷åñêè åôåêò íà ôàêòîðà „ñîðò”
âúðõó ïðîäóêòèâíîñòòà íà ïàìóêà íà òîçè åòàï îò
èçñëåäâàíåòî íå ìîæå äà ñå òâúðäè, ÷å ñîðò „Àâàíãàðä-
264” å ïî-÷óâñòâèòåëåí êúì çàñóøàâàíå â ñðàâíåíèå ñ
äðóãèòå ñîðòîâå.
ËÈÒÅÐÀÒÓÐÀ
Êàðèìîâà, È., 2009. Âëèÿíèå ïðîäîëæèòåëüíîé
ïî÷âåííîé çàñóõè íà ôèçèîëîãè÷åñêèå ïðîöåññû ó
ðàçëè÷íûõ ñîðòîâ è ëèíèé õëîï÷àòíèêà.
Àâòîðåôåðàò, Äóøàíáå.
Íèêîëîâ, Ã., 1984. Îïòèìèçèðàíå íà ïîëèâíèÿ ðåæèì è
ãúñòîòàòà íà ïîñåâà â óñëîâèÿòà íà èíòåíçèôèêàöèÿ
íà ïàìóêîïðîèçâîäñòâîòî. Äèñåðòàöèÿ.
Àâòîðèòå èçêàçâàò áëàãîäàðíîñò íà Ôîíä “Íàó÷íè
èçñëåäâàíèÿ” çà ïðåäîñòàâåíîòî ôèíàíñèðàíå íà
ïðîåêò ÄÎ 02-88/2008.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Ìàëãîæàòà Áåðîâà
E-mail: maberova@abv.bg
Äèìèòðîâà, Ë., 1970. Âëèÿíèå íà âúíøíèòå óñëîâèÿ
âúðõó ôîðìèðàíåòî è îêàïâàíåòî íà ïëîäíèòå
åëåìåíòè íà ïàìóêà. Ïðîáëåìè íà áèîëîãèÿòà è
àãðîòåõíèêàòà íà ïàìóêà, ÁÀÍ, Ñîôèÿ, 1970.
Grimes, D.W. and H. Yamada,1982. Relation of cotton
growth and yield to minimum leaf water potential. – Crop
Sci., 22: 134-139.
Krieg, D.R., 1997. Genetic and environmental factors
affecting productivity of cotton. – In: Proc. Beltwide
Cotton Prod. Res. Conf., p. 1347.
McMichael, B.L. and J.D.Hesketh, 1982. Field investigation
of the response of cotton to water deficit. – Field Crops
Res., 5:319-333.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
89
ÐÅÀÊÖÈß ÍÀ ÔÎÒÎÑÈÍÒÅÒÈ×ÍÈß ÀÏÀÐÀÒ È ÌÚÆÊÈß ÃÀÌÅÒÎÔÈÒ ÏÐÈ ÏÈÏÅÐ (CAPSICUM ANNUUM L.)
ÊÚÌ ÐÀÇËÈ×ÍÈ ÂÈÑÎÊÎÒÅÌÏÅÐÀÒÓÐÍÈ ÐÅÆÈÌÈ
RESPONSE OF THE PHOTOSYNTHETIC APPARATUS AND MALE GAMETOPHYTE OF PEPPER PLANTS
(CAPSICUM ANNUUM L.) TO VARIOUS HIGH TEMPERATURE REGIMES
Âàëåíòèíà Ïåòêîâà*, Âåñåëèíà Íèêîëîâà, Âåëè÷êà Òîäîðîâà, Âåñåëèíà Ñòîåâà, Åëåíà Òîïàëîâà
Valentina Petkova*, Vesselina Nikolova, Velichka Todorova, Vesselina Stoeva, Elena Topalova
Èíñòèòóò ïî çåëåí÷óêîâè êóëòóðè ”Ìàðèöà”, Ïëîâäèâ
“Maritsa” Vegetable Crops Research Institute, Plovdiv
*E-mail: valpetkova@ gmail.com
Ðåçþìå
Èçñëåäâàíè ñà ïðîìåíèòå â ïàðàìåòðèòå íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ è â ìúæêèÿ ãàìåòîôèò ïîä
âëèÿíèå íà âèñîêà òåìïåðàòóðà (ÂÒ) ñ öåë äà ñå îïðåäåëè ïîäõîäÿù òåìïåðàòóðåí ðåæèì çà òåñòèðàíå íà ãåíîòèïè
îò Capsicum annuum L. Ðàñòåíèÿòà (ñîðò „Áÿë Êàëèíêîâ”) ñà îòãëåäàíè â îðàíæåðèÿ â 5 L ïëàñòìàñîâè ñúäîâå ñ
òîðôåíî-ïî÷âåí ñóáñòðàò. Ïðåç ôàçà áóòîíèçàöèÿ–öúôòåæ öåëèòå ðàñòåíèÿ ñà òðåòèðàíè ñ ÂÒ (35, 40 è 45°C è
ïðîäúëæèòåëíîñò 1, 2, 3 è 4 h). Áåøå óñòàíîâåíî, ÷å ïèïåðîâèòå ðàñòåíèÿ ñå ïîâëèÿâàò â ðàçëè÷íà ñòåïåí îò
ïðèëîæåíèòå òåìïåðàòóðíè ðåæèìè. Ìîæåì äà îáîáùèì, ÷å: ñòîéíîñòèòå 35°C è 45°C íå ñà ïîäõîäÿùè çà òåñòèðàíå
íà ëèíèè è ñîðòîâå ïèïåð êúì ÂÒ; ìúæêèÿò ãàìåòîôèò å ïî-÷óâñòâèòåëåí êúì ÂÒ â ñðàâíåíèå ñ ôîòîñèíòåòè÷íèÿ
àïàðàò; óñòàíîâåí å ïîëóëåòàëåí åôåêò âúðõó ìúæêèÿ ãàìåòîôèò íà ðàñòåíèÿ îò ìîäåëíèÿ ñîðò „Áÿë Êàëèíêîâ” ïðè
òåìïåðàòóðà 40°Ñ ñ ïðîäúëæèòåëíîñò 2 è 3 h; ïðîìåíèòå â ïàðàìåòðèòå íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ ñà ïîäîáðå
èçðàçåíè ïðè òåìïåðàòóðíèòå ðåæèìè ñ ïî-âèñîêè ñòîéíîñòè (40°Ñ è 45°C çà 2 è 3 h); ïîäõîäÿù òåìïåðàòóðåí
ðåæèì çà òåñòèðàíå íà òåðìîòîëåðàíòíîñòòà íà ïèïåð âêëþ÷âà ñòîéíîñò 40°Ñ è ïðîäúëæèòåëíîñò 2 èëè 3 h.
Abstract
The changes in chlorophyll fluorescence parameters and in male gametophyte caused by high temperature (HT)
were studied to determine a suitable regime to test the heat tolerance of Capsicum annuum genotypes. The plants (cv. Bial
Kalinkov) were grown in a glasshouse in 5 L plastic pots on a commercial soil-peat substrate. Whole plants were treated
with HT (35o, 40o and 45oC for 1, 2, 3, and 4 hours) in the bud formation-blossoming stage. It was established that the
applied HT regimes influenced the pepper plants to varying extent. We concluded that: temperature values of 35 oC and 45
oC are not suitable to screen test pepper lines and varieties to heat tolerance; the male gamethophyte is more sensitive to
HT stress compared with the photosynthetic apparatus; a semi-lethal effect on the male gamethophyte of pepper plants
from the model cv. Bial Kalinkov was manifested at 40oC for 2 and 3 hours; the changes of the chlorophyll fluorescence
parameters are better expressed at the higher values of HT regimes (40oC and 45oC for 2 and 3 hours); a suitable temperature
regime to screen-test the heat tolerance of pepper species includes 40oC and duration of 2 or 3 hours.
Êëþ÷îâè äóìè: òåìïåðàòóðåí ñòðåñ, ñåëåêöèÿ, ôîòîñèíòåòè÷åí àïàðàò, ìúæêè ãàìåòîôèò, õëîðîôèëíà
ôëóîðåñöåíöèÿ.
Key words: temperature stress, breeding, photosynthetic apparatus, male gametophyte, chlorophyll fluorescence.
INTRODUCTION
Pepper (Capsicum annuum L.) is among the main
vegetable species in Bulgaria. The high temperatures (HT)
(above 35°C), especially concurrent with the reproductive
period of the plants, cause an abortion of their buds and
flowers resulting in significant decrease of productivity
(Veselinov et al., 1984). This has become a serious problem
to pepper growers and breeders and the best way to solve
it is by breeding temperature tolerant varieties (Aloni et al.,
2001).
The photosynthetic apparatus (PSA) and male
gametophyte have been considered as rather sensitive to


92
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
with unviable pollen (11.1, 18.2 and 40.0% at 1, 2, and 3
hours, respectively) (Fig. 1a). The HT treatment with 45°C
in 2, 3, and 4 hours caused a lethal effect on the pollen
viability. The values of pollen germination and pollen tube
length were practically zero at the HT 45°C in 2, 3 and 4 h
(Fig. 1b). The shown differences between the male
gametophyte reactions of pepper plants to the various HT
regimes allow us to prefer as suitable regime for an
assessment of pepper breeding materials 40°C with
duration 2 and 3 hours. This regime has a semi lethal effect
and is able to disclose the available diversity in the pepper
accessions on the basis of their pollen reaction to high
temperature stress.
CONCLUSIONS
We conclude that the male gamethophyte is more
sensitive to HT stress compared with the photosynthetic
apparatus.
Temperature regimes of (1) 35°C with duration
1-4 hours and (2) 45°C with duration 2, 3, 4 hours, are not
suitable for revealing genotype differences between the heat
tolerance of pepper genotypes.
A semi lethal effect on the male gamethophyte of
pepper plants from the model cv. “Bial Kalinkov” was
established at temperature 40°C for 2 and 3 hours.
Temperature regime of 40°C with duration 2 and
3 hours is suitable to screen test for heat tolerance in the
pepper gene pool for breeding purposes.
REFERENCES
Aloni, B., M.M. Peet, M. Pharr and L. Karni, 2001. The
effect of high temperature and high atmospheric CO2 on
carbohydrate changes in bell pepper (Capsicum annum)
pollen in relation to its germination. – Physiol.
Plant., 112: 505–512. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus (29).
Berry, J.A. and O. Björkman, 1980. Photosynthetic response
and adaptation to temperature in higher plants. – Annual
Rev. Plant Physiol., 31:491–543.
Petkova, V., V. Nikolova, I. Poryazov, 2003. Possibilities
for selection of garden beans (Phaseolus vulgaris L.)
genotypes, tolerant to high temperature. I. Changes in
chlorophyll fluorescence parameters. – Annual report
of Bean Improvement Cooperative, 46:81-82.
Nikolova, V., V. Petkova, I. Poryazov, 2003. Possibilities
for selection of garden been (Phaseolus vulgaris L.)
genotypes tolerant to high temperature. ²². Variation of
pollen viability. – Annual report of Bean Improvement
Cooperative, 46:83-84.
Petkova, V., I. Denev, D. Cholakov, I. Poróazov, 2007. Field
screening for heat tolerant common bean cultivars
(Phaseolus vulgaris L.) by measuring of chlorophyll
fluorescence induction parameters. – Scientia
Horticulturae, 111 (2):101-106.
Petkova, V., V. Nikolova, S. Kalapchieva, S. Angelova, V.
Stoeva, E. Topalova, 2009. Physiological response and
pollen viability of Pisum sativum genotypes under high
temperature influence. – Acta Horticulturae, ISHS, 830
(2): 665-671.
Reddy, K. Raja and V.G. Kakania, 2007.
Screening Capsicum species of different origins for high
temperature tolerance by in vitro pollen
germination and pollen tube length. – Scientia
Horticulturae, 112 (2):130-135.
Strasser, B.J., Strasser, R.J., 1995. Measuring fast
fluorescence transients to address environmental
questions: the JIP-test. – In: Marhis, P. (Ed.),
Photosynthesis: From Light to Biosphere, vol. V. Kluwer
Academic Publishers, Dordrecht/Boston/London, pp.
977-980.
Strasser, R.J., M.Tsimilli-Michael, A. Srivastava, 2005.
Analysis of the fluorescence transient. – In: Govindjee
(series Ed.), Advances in Photosynthesis and
Respiration. – In: Papageorgiou, G.C. Govindjee
(volume Eds.), Chlorophyll a Fluorescence: A Signature
of Photosynthesis. Kluwer, pp. 321–362.
Veselinov, E., E. Elenkov, V. Karaivanov, D. Popova, Y.
Todorov, B. Kumanov, 1984. Pepper. Zemizdat, Sofia,
pp.31 (in Bulgarian).
Zhang, Ru, and T.D. Sharkey, 2009. Photosynthetic electron
transport and proton flux under moderate heat stress.
– Photosynth. Res., 100, 29–43.
ACKNOWLEDGEMENT
This investigation was supported from the
National Fund “Scientific Investigations” by Ministry
of Education, Science and Technology (Bulgaria),
project “Unique Science Equipment”-117/1998.
ÁËÀÃÎÄÀÐÍÎÑÒ
Òîâà èçñëåäâàíå å èçâúðøåíî ñ ïîäêðåïàòà
íà ÍÔ “Íàó÷íè èçñëåäâàíèÿ” ïðè ÌÎÍ, ïðîåêò
“Óíèêàëíà íàó÷íà àïàðàòóðà” - 117/1998.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Ìàëãîæàòà Áåðîâà
E-mail: maberova@abv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
93
IN VITRO ÌÎÄÅËÍÀ ÑÈÑÒÅÌÀ ÇÀ ÎÖÅÍÊÀ ÍÀ ÑÒÐÅÑÎÂÈß ÎÒÃÎÂÎÐ ÍÀ ÎÂÎÙÍÈ ÐÀÑÒÅÍÈß ÊÚÌ
ÒÐÅÒÈÐÀÍÅ Ñ ÏÎ×ÂÅÍÈ ÕÅÐÁÈÖÈÄÈ
IN VITRO MODEL SYSTEM FOR EVALUATION OF FRUIT PLANTS STRESS RESPONSES TO SOIL HERBICIDE
TREATMENT
Ëèëÿíà Íà÷åâà*, Çàðÿ Ðàíêîâà, Ïåòÿ Ãåð÷åâà
Lilyana Nacheva*, Zarya Rankova, Petya Gercheva
Èíñòèòóò ïî îâîùàðñòâî - Ïëîâäèâ
Fruit Growing Institute – Plovdiv
*E-mail: lilyn@abv.bg
Ðåçþìå
Ïðèëîæåíèåòî íà õåðáèöèäè â îâîùíèòå ðàçñàäíèöè êàòî åëåìåíò îò äîáðàòà àãðîòåõíèêà ÷åñòî êðèå ðèñê
îò ïðîÿâÿâàíå íà ôèòîòîêñè÷íè ñèìïòîìè ïðè ðàñòåíèÿòà. Çàòîâà ñà íåîáõîäèìè ïðåäâàðèòåëíè èçñëåäâàíèÿ çà
âúçäåéñòâèåòî íà ðàçëè÷íèòå õåðáèöèäè âúðõó âåãåòàòèâíèòå ïðîÿâè íà ïîäëîæêèòå. Öåëòà íà íàñòîÿùîòî
èçñëåäâàíå áå äà ñå ïðîñëåäè âëèÿíèåòî íà ïî÷âåíèòå õåðáèöèäè òåðáàöèë, ïåíäèìåòàëèí è íàïðîïàìèä âúðõó
èçîëèðàíè åìáðèîíè îò Prunus cerasifera è íÿêîè ìèêðîðàçìíîæåíè êëîíîâè ïîäëîæêè çà îâîùíè âèäîâå - GF677,
ÌÌ106 è Prunus domestica “Wangenheims” ïðè in vitro óñëîâèÿ. Ñëåä òåðòèðàíå ñ ïåíäèìåòàëèí å óñòàíîâåíî
èíõèáèðàíå íà êîðåíîâèòå ìåðèñòåìè è ïîêàôåíÿâàíå íà êîòèëåäîíèòå íà åìáðèîíè îò Prunus cerasifera ñ äúëæèíà
íà åìáðèîíàëíèÿ êîðåí, ïî-ìàëêà îò 5 mm. Ïî÷âåíèòå õåðáèöèäè òåðáàöèë, ïåíäèìåòàëèí è íàïðîïàìèä ïðè÷èíÿâàò
ôèòîòîêñè÷íîñò, èçðàçÿâàùà ñå â ïîòèñêàíå íà ðàñòåæà íà êîðåíèòå íà âêîðåíåíè ðàñòåíèÿ îò GF677 ïðè in vitro
óñëîâèÿ. Âèçóàëíè ñèìïòîìè íà ôèòîòîêñè÷íîñò ïî ëèñòàòà è ñòúáëàòà íå ñà íàáëþäàâàíè. Ïåíäèìåòàëèí è
íàïðîïàìèä äåïðåñèðàò ðàñòåæà íà ñòúáëàòà è êîðåíèòå íà ìèêðîðàñòåíèÿ îò ÿáúëêîâàòà ïîäëîæêà MM106.
Ñëåä òðåòèðàíå ñ òåðáàöèë íà in vitro âêîðåíåíè ðàñòåíèÿ îò ïîäëîæêàòà “Wangenheims” íå ñà îò÷åòåíè
ñèìïòîìè íà ôèòîòîêñè÷íîñò – õëîðîçà, íåêðîçà èëè çàáàâÿíå íà ðàñòåæà. Òðåòèðàíåòî ñ ïåíäèìåòàëèí è íàïðîïàìèä
ïîòèñêà ôîðìèðàíåòî íà êîðåíè è ðàñòåæà íà íåâêîðåíåíè ìèêðîðàñòåíèÿ. Òåçè äâà õåðáèöèäà áëîêèðàò
âêîðåíÿâàíåòî íà ïîäëîæêàòà Prunus domestica “Wangenheims” ïðè in vitro óñëîâèÿ.
Abstract
Herbicide application in the fruit tree nursery as an element of good agrotechnical practice quite often might be
risky for the appearance of phytotoxic symptoms in plants. That is why preliminary studies are needed to estimate the effect
of different herbicides on the vegetative habits of the rootstocks. The aim of the present research was to study the effect of
the soil herbicides Terbacil, Pendimethalin and Napropamide on isolated Prunus cerasifera embryos and some
micropropagated rootstocks for fruit species - GF677, ÌÌ106 and Prunus domestica “Wangenheims” under in vitro conditions.
Inhibition of root meristem growth and browning of cotyledons were established after the treatment with pendimethalin
of Prunus embryos with embryonic roots shorter than 5mm. The soil herbicides terbacil, pendimethalin and napropamid
caused phytotoxicity expressed in suppression of the root growth of rooted plants of GF677 under in vitro conditions. Visual
symptoms of phytotoxicity in the leaves and stems were not established. Pendimethalin and napropamid depressed the
stem and root growth of the apple rootstock MM106 plantlets. After treatment with terbacil of in vitro rooted “Wangenheims”
plants no external symptoms of phytotoxicity – chlorosis, necrosis and depressing effect were observed. After treatment
with pendimethalin and napropamide, a depressing effect on the root formation and growth of microplants without roots
were established. The applied herbicides blocked rooting of Prunus domestica “Wangenheims” under in vitro conditions.
Êëþ÷îâè äóìè: ïî÷âåíè õåðáèöèäè, ôèòîòîêñè÷íîñò, âåãåòàòèâíè ïîäëîæêè, in vitro, åìáðèîíè.
Key words: soil herbicides, phytotoxicity, vegetative rootstock, in vitro, embryos.
94
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
INTRODUCTION
Herbicide application in the fruit tree nursery as
an element of good agrotechnical practice quite often might
be risky for the appearance of phytotoxic symptoms in plants
(Wazbinska, 1997; Kaufman and Libek, 2000; Rankova,
2004; Rankova, 2006). That is why preliminary studies are
needed to estimate the effect of different herbicides on the
vegetative habits of the rootstocks.
The in vitro plants are useful experimental model
system for evaluating the effect of different environmental
factors. They are grown under controlled conditions, they
are uniform, they can be reproduced quickly and easily in
great quantities and they enable precise experiments for
evaluation of different parameters – growth, biomass
accumulation, biochemical and biophysical indices about
the physiological status of the plants. Although observations
on growth characteristics and physiological status of the
treated plants have been carried out under field conditions,
the use of in vitro plants gives a new opinion about the
mechanism of action of the bioactive substances (Rankova
et al., 2004). A similar model system was used in studying
the physiological effect of heavy metals on agricultural crops
(Costa and Spitz, 1977; Sanita di Toppi et al., 1998).The
results obtained in in vitro screening were confirmed by in
vivo observations (Saladin et al., 2003).
The aim of the present research was to study the
effect of the soil herbicides Terbacil, Pendimethalin and
Napropamide on the isolated Prunus cerasifera embryos,
peach rootstock GF677, apple rootstock ÌÌ106, Rootstock
Prunus domestica “Wangenheims” under in vitro conditions.
MATHERIAL AND METHODS
The experiments were carried out in 2001-2009 in
the plant biotechnological lab of the Fruit Growing institute
– Plovdiv. In vitro isolated Prunus cerasifera embryos as
well as micropropagated plants without roots and with 10
mm long roots from vegetative peach rootstock GF677,
apple rootstock MM106 and rootstock Prunus domestica
“Wangenheims” were used in the studies. In vitro plants
were treated with the soil herbicides Terbacil (Sinbar 80
WP) – 100-150 g/da; Pendimethalin (Stomp 33 EC) – 400-
600 ml/da and Napropamide (Devrinol 4 F) – 400-600 ml/
da. The herbicide solution (5 ml/cultivation platerecalculated
according to the surface of the in vitro used
cultural vessels) was laid as a film on the surface of the
nutrient medium. Distillated water was used as a control
(Rankova et al., 2006 a,b; 2009).
The in vitro plants were cultivated in a growth
chamber at a temperature of 22±2°Ñ and a photoperiod of
16/8 hours (40 μmol m-2s-1 PPFD).
Visual observations on the development and
manifestation of external symptoms of phytotoxicity
(chlorosis, necrosis, plant withering) were carried out in
dynamics on the 7th, 14th and 21st day after the date of
treatment. On the 21st day the following biometric indices
were reported – plant height (mm), mean number of roots
per plant, mean length of the roots (mm), and relative growth
rate per plant (RGR =(lnFWfinal-lnFWinitial)/21days), as well
as the content of plastid pigments.
RESULTS AND DISCUSSION
Prunus cerasifera L. embryos treated with
pendimethalin
Phytotoxicity (inhibition of root meristem growth
and browning of cotyledons) was established in the
treatment of embryos with embryonic roots< 5mm in length.
The embryos whose embryonic roots at the moment of
herbicide application were longer than 5 mm did not show
any symptoms of phytotoxicity (Gercheva et al., 2002).
Herbicide treatment of peach rootstock
GF677 in vitro
Visual characteristics of phytotoxicity in the leaves
and stems of rooted plants of GF677 under in vitro
conditions were not established after treatment with the
soil herbicides terbacil, pendimethalin and napropamid.
These herbicides did not exert an effect on rooting and stem
growth of plantlets but caused phytotoxicity expressed in
suppression of the root growth. It was most strongly
expressed after treatment with napropamid at the two
applied rates (Rankova et al., 2004).
Apple rootstock MM106
In both variants with napropamid applied the
appearance of necrosis in the root tips was observed on
the 7th day. It was established that pendimethalin and
napropamid depressed the stem and root growth of the
treated plants (Fig.1.). The inhibiting effect of napropamid
on those characteristics was expressed even more strongly.
Both soil herbicides did not exert any significant effect on
the mean number of roots per plant. The application of those
herbicides was the reason for the lower content of leaf
pigments (chlorophyll à, â, (à+â) and carotenoids), the
strongest depressing effect being reported after treatment
with napropamid (Rankova et al., 2009).
Rootstock Prunus domestica “Wangenheims”
A. Treatment with soil herbicides Terbacil (Sinbar 80 WP)
After treatment with terbacil of in vitro rooted plants
no external symptoms of phytotoxicity – chlorosis, necrosis
and depressing effect were observed. No inhibiting influence
on growth of stem and roots were established (Rankova et
al., 2006b).
B. Treatment with Pendimethalin and Napropamide
Rooted plantlets
On the 14th day after the application of
napropamide on the rooted “Wangenheims” external
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
95
0
0.002
0.004
0.006
0.008
0.01
0.012
RGR, mg/day
Control P4 P6 4 6
a
b b
c c
0
10
20
30
40
50
average root lenght, mm
Control P4 P6 4 6
a
b b
c c
Ôèã. 1. Âëèÿíèå íà ïî÷âåíèòå õåðáèöèäè ïåíäèìåòàëèí è íàïðîïàìèä âúðõó îòíîñèòåëíàòà ñêîðîñò íà ðàñòåæ (RGR) è
äúëæèíàòà íà êîðåíèòå íà in vitro âêîðåíåíè ðàñòåíèÿ îò ÿáúëêîâàòà ïîäëîæêà MM106. P4 – Pendimethalin – 4.0 l/ha;
P6 - Pendimethalin – 6.0 l/ha; N4 - Napropamid – 4.0 l/ha; N6 – Napropamid - 6.0 l/ha. Ðàçëè÷íèòå áóêâè íà âñÿêà êîëîíà
ïîêàçâàò ñúùåñòâåíà ðàçëèêà ïî Äúíêàí (DMRT) (P<0.05)
Fig. 1. Effect of the soil herbicides Pendimethalin and Napropamid on the relative growth rate (RGR) and root length of in vitro
rooted apple rootstock MM106. P4 – Pendimethalin – 4.0 l/ha; P6 - Pendimethalin – 6.0 l/ha; N4 - Napropamid – 4.0 l/ha;
N6 – Napropamid - 6.0 l/ha. Different letters within each column indicates significant difference (P<0.05) by DMRT
0
5
10
15
20
25
30
35
40
45
Control P 400 P 600 N 400 N 600
plant height, mm
a a
b
b
c
0
2
4
6
8
10
12
Control P 400 P 600 N 400 N 600
average root lenght, mm
a
b
b b
c
Ôèã. 2. Âëèÿíèå íà ïî÷âåíèòå õåðáèöèäè ïåíäèìåòàëèí è íàïðîïàìèä âúðõó âèñî÷èíàòà íà ðàñòåíèÿòà è äúëæèíàòà íà
êîðåíèòå íà in vitro âêîðåíåíè ðàñòåíèÿ îò Prunus domestica “Wangenheims”. Control (íåòðåòèðàíè);
P400 – Pendimethalin – 4 l/ha; P600 - Pendimethalin – 6 l/ha; N400 - Napropamid – 4.0 l/ha; 5. N600 – Napropamid - 6 l/ha.
Ðàçëè÷íèòå áóêâè íà âñÿêà êîëîíà ïîêàçâàò ñúùåñòâåíà ðàçëèêà ïî Äúíêàí (DMRT) (P<0.05)
Fig. 2. Effect of the soil herbicides Pendimethalin and Napropamid on the plant height (mm) and root length (mm) of in vitro rooted
Prunus domestica “Wangenheims”. Control (untreated); P400 – Pendimethalin – 4 l/ha; P600 - Pendimethalin – 6 l/ha;
N400 - Napropamid – 4.0 l/ha; 5. N600 – Napropamid - 6 l/ha.
Different letters within each column indicates significant difference (P<0.05) by DMRT
0
5
10
15
20
25
30
35
40
45
50
Control P400 P500 P600 N400 N500 N600
stem length, mm
stem length increase, mm
Ôèã. 3. Âëèÿíèå íà ïî÷âåíèòå õåðáèöèäè ïåíäèìåòàëèí è
íàïðîïàìèä âúðõó äúëæèíàòà íà ñòúáëàòà (mm) è
ïðèðàñòà (mm) íà íåâêîðåíåíè ðàñòåíèÿ îò Prunus
domestica “Wangenheims”. Control (íåòðåòèðàíè); P400,
P500, P600 – òðåòèðàíè ñ ïåíäèìåòàëèí (ñúîòâåòíî
400 ml/da, 500 ml/da è 600 ml/da); P400, P500, P600 –
òðåòèðàíè ñ íàïðîïàìèä (ñúîòâåòíî 400 ml/da,
500 ml/da è 600 ml/da)
Fig. 3. Effect of the soil herbicides Pendimethalin and
Napropamid on the stem length (mm) and stem length
increase (mm) of Prunus domestica “Wangenheims” plantlets
(without roots). Control (untreated); P400, P500, P600 -
treated with Pendimethalin (400 ml/da, 500 ml/da and 600
ml/da respectively); P400, P500, P600 – treated with –
Napropamid (400 ml/da, 500 ml/da and 600 ml/da
respectively)
96
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
symptoms of phytotoxicity and necrosis in the root formation
area were appeared. These symptoms were more
pronounced at the higher concentration of napropamide.
After treatment with pendimethalin, a chlorosis in the leaves
of the plantlets and obvious depression of stem and root
growth were reported (Fig. 2).
Plantlets without roots
The soil herbicides pendimethalin and
napropamide blocked rooting of Prunus domestica
“Wangenheims” under in vitro conditions. After treatment
external symptoms of phytotoxicity and depressing effect
on root formation and growth of microplants without roots
were established (Fig.3). On the 14th day after the
application of napropamide a necrosis in the root formation
area was appeared. After treatment with pendimethalin,
chlorosis in the leaves of the plantlets and obvious
depression of growth were reported (Rankova et al., 2006a).
CONCLUSIONS
The obtained results about influence of the soil
herbicides on the growth of rootstocks in vitro showed that
in vitro plants could be an useful model system for evaluation
of fruit plants stress responses to soil herbicide treatment.
It is necessary an individual approach to different rootstocks
– seed and vegetative – depending on the mechanism of
phytotoxic action of the active substances.
REFERENCES
Costa and Spitz, 1977. Influence of cadmium on soluble
carbohydrates, free amino acids, protein content of in
vitro cultured Lupinus albus .– Plant Sci., 128:131–140.
Gercheva, P., Z. Rankova and K. Ivanova, 2002. In vitro
test system for herbicide phytotoxicity on mature
embryos of fruit species. – Acta Horticulturae, 577: 333-
337.
Kaufman, E. and Libek, A., 2000. Damages to cherry plum
seedlings (Prunus cerasifera var. Daviricata Bailey)
caused by herbicides. – In: Proceedings of the
International Conference on Fruit Production and Fruit
Breeding, Tartu, Estonia, 12-13 September, 132-137.
Rankova, Z., 2004. Effect of some soil herbicides on the
vegetative habits of seedlings of yellow plum and peach.
PhD Dissertation.
Rankova, Z., 2006. Effect of some soil herbicides on the
vegetative habits of mahaleb cherry (Prunus machaleb
L.) seedling rootstocks. – Bulg. J. Agric. Sci., 12: 429-
433.
Rankova, Z., P. Gercheva and Ê. Ivanova, 2004. Screening
of soil herbicides under in vitro conditions. – Acta
Horticulturae Serbica, vol. IX, 17: 11-17.
Rankova, Z., L. Nacheva, K. Zapryanova, P. Gercheva and
V. Bozkova, 2006a. Effect of soil herbicides napropamid
and pendimethalin on rooting and growth of the
vegetative plum rootstock Pr. domestica Wangenheims
under in vitro conditions. – Journal of Mountain
Agriculture on the Balkans, 9(3): 349-359.
Rankova, Z., L. Nacheva, and P. Gercheva, 2009. Growth
habits of the vegetative apple rootstock MM106 after
treatment with some soil herbicides under in vitro
conditions. – Acta Hort. (ISHS), 825:49-54.
Rankova, Z., L. Nacheva, P. Gercheva, and V. Bozkova,
2006b. Vegetative habits of plum rootstock
Wangenheims after treatment with terbacil under in vitro
conditions. – In: VI National Conference “Ecology and
helth” Plovdiv, May, 2006, pp. 339-344.
Saladin, G., C. Magne, and C. Clement, 2003. Stress
reactions in Vitis vinifera L. following soil application of
the herbicide flumioxazin. – Chemosphere, 53: 199–
206.
Sanita di Toppi, L., M. Lambardi, L. Pazzagli, G. Capuggi,
M. Durante and R. Gabbrielli, 1998. Response to
cadmium in carrot in vitro plants and cell suspension
cultures. – Plant Sci., 137:119–129.
Wazbinska, J., 1997. Technological improvement of
generative cherry plum rootstocks, one-year Wegierka
Lowicka plum trees and apple seedlings. – Acta.
Academiae Agriculturae ac Technicae, Olstenensis
Agricultura, 64: 107.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Çëàòêî Çëàòåâ
E-mail: zl_zlatev@abv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
97
ÂËÈßÍÈÅ ÍÀ ÕÈÌÈ×ÍÈ ÌÓÒÀÃÅÍÈ ÂÚÐÕÓ ÌÎÐÔÎËÎÃÈ×ÍÈ ÁÅËÅÇÈ Â Ì3 ÏÎÊÎËÅÍÈÅ ÍÀ ÏÅÒÓÍÈß
(PETUNIA x ATKINSIANA D. DON)
THE INFLUENCE OF CHEMICAL MUTAGENS ON MORPHOLOGICAL TRAITS IN M3 GENERATION OF PETUNIA
(PETUNIA x ATKINSIANA D. DON)
Ìàðöåëèíà Êðóïà-Ìàëêåâè÷*, Àðëåòà Äðîçä, Ìèëîø Ñìîëèê, Êàòàæèíà Ëèíõàðò
Marcelina Krupa-Malkiewicz*, Arleta Drozd, Milosz Smolik, Katarzyna Linhart
Êàòåäðà “Ñåëåêöèÿ íà çåëåí÷óêîâèòå êóëòóðè”
Çàïàäíîïîìåðàíñêè òåõíîëîãè÷åí óíèâåðñèòåò, Ø÷å÷èí, Ïîëøà
Department of Horticultural Plant Breeding
West Pomeranian University of Technology in Szczecin, Poland
* E-mail: marcelina.krupa-malkiewicz@zut.edu.pl
Ðåçþìå
Öåëòà íà ïðåäñòàâåíîòî ïðîó÷âàíå áåøå äà ñå îïðåäåëè âëèÿíèåòî íà õèìè÷åñêèòå ìóòàãåíè âúðõó
ìîðôîëîãè÷íèòå õàðàêòåðèñòèêè â M3 ïîêîëåíèå íà ïåòóíèÿ. Ìîðôîëîãè÷íèòå ïðîìåíè ñå èçðàçÿâàò ãëàâíî â ïðîìÿíà
íà öâåòà íà ïèãìåíòèòå â öâåòîâåòå, êàêòî è â ïðîìåíèòå â õëîðîôèëíîòî ñúäúðæàíèå â ëèñòàòà. Ðåçóëòàòèòå
ïîêàçâàò, ÷å íàé-åôåêòèâíè çà èíäóöèðàíå íà ìóòàöèè ñà EMS è DES ñ äîçà 0,5 mM. Çà îöåíêà íà ïðîìåíèòå íà
íèâîòî íà ÄÍÊ å èçïîëçâàíà ISSR-PCR òåõíèêà. Íàé-âèñîêîòî ðàçíîîáðàçèå ñðåä èçñëåäâàíèòå ãåíîòèïîâå íà M3
ïîêîëåíèå íà ïåòóíèÿ å ïîëó÷åíî ñëåä àìïëèôèêàöèÿ íà (GA)8A, (AC)8G, (GA) 8Ò è (AC)8C (3) ïðàéìåðè.
Abstract
The aim of the presented study was to determine the effect of chemical mutagens on the morphological
characteristics in M3 generation of petunia. The morphological changes referred principally to: discoloration of pigments in
the flowers, as well as chlorophyll changes on the leaves and a return of crown-shaped petals. The results showed that
EMS and DES at a dose of 0.5 mM were the most effective for inducing mutations. ISSR-PCR techniques were used to
assess changes at the DNA level. The highest diversity among the analyzed genotypes of M3 generation of petunia were
obtained after the amplification (GA)8A, (AC)8G, (GA)8T and (AC)8C (3) primers.
Êëþ÷îâè äóìè: ïåòóíèÿ, ìóòàöèÿ, õèìè÷íè ìóòàãåíè, ISSR-PCR.
Key words: petunia, mutation, chemical mutagens, ISSR-PCR.
INTRODUCTION
Mutagenesis is known as mutation, that is,
uncontrolled changes in the genetic material of plants
exposed to the mutagen. It can be used either to induce
changes in plants propagated vegetatively and generatively.
The frequency of spontaneous mutations, which arise
naturally in the environment is relatively low. Therefore, to
increase this process chemical or physical mutagens were
used. With their application various kinds of changes can
be seen (both positive and negative). The appropriate
choice of a measure and concentration of a mutagenic can
create specified mutants with high frequency (Ahloowalia
and Maluszynski, 2001; Berenschot et al., 2008).
Changes that occur in the genes of plants treated
with mutagen have a recessive nature and do not always
reveal the phenotype of M1 generation. Fission occurs in
the generation characteristics of M2 - M3, although these
relationships differ significantly from mendelian relationships
(Sakin and Yildirim, 2004). Therefore, the aim of this study
was to determine the frequency of phenotypic and genetic
changes in plants induced M3 generation of petunia by ethyl
methanesulphate (EMS), methyl methanesulphate (MMS),
diethylsulphate (DES) and sodium azide (SA).
MATERIALS AND METHODS
The objective of this study was to analyze
mutagenesis of the M3 generation of petunia after application
of SA, EMS, MMS and DES. Mutagen doses selected were
1.0 and 1.5 mM of SA, 0.5 and 1.0 mM DES, 0.5 and 1.5
98
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
mM EMS,1.5 and 2.0 mM MMS. These solutions were
diluted with a sterile 0.025 mM phosphate buffer (pH = 4).
As a control plants not treatment by chemical mutagens
were used. The procedure of mutagenic treatment was
described previously by Krupa-Malkiewicz (2009).
The M3 generation was raised from 100 seeds of
the each mutagen used. Plants were grown in a glass
greenhouse. The plants that obtained were screened for
chlorophyll changes, different shape and number of flower
petals, discoloration of pigment in flowers. During the
experiment germination energy of seeds, number of buds
and flowers, as well as shoot height was determined. The
results were analyzed by using Tukey‘s test.
Plants with phenotype variability and control were
examined using the ISSR-PCR technique (Zietkiewicz et
al., 1994). Each fragment that was amplified using 17 ISSR
primers was coded in binary form by ‘0’ or ‘1’ or absence or
presence in each plant, respectively.
RESULTS AND DISCUSSION
Induced mutations have been applied for the past
70 years to produce mutant cultivars by changing the plant
characteristic for a significant increase in plant production
among both seed and vegetatively propagated crops. The
most common chemical mutagens used are EMS and SA
(Jain, 2006). EMS has been widely used in plants because
it causes a high frequency of gene mutations and a low
frequency of chromosome aberrations (Bhagwat and
Duncan, 1998; Van Harten, 1998; Bhate, 2001; Koh and
Davies, 2001; Latado et al., 2004; Vagera et al., 2004).
In our study the population of petunia M3 consisted
of 100 seeds representing each concentration of mutagens
used in the experiment. A similar size of population was
used by Krupa-Malkiewicz (2009) – with 150 seeds (Petunia
x atkinsiana D. Don ‘Flash Red’) in any combination of
mutagens, Bhagwet and Duncan (1998) used from 105 to
225 shoot apices of banana and Bhate (2001) - 250 morning
Ôîò. 1. Öâåòîâåòå íà ïåòóíèÿ Ì3 ïîêîëåíèå ñ ôåíîïèï âàðèàöèè (b-d) è êîíòðîëà (a)
Phot. 1. Flowers of petunia M3 generation with phenotype variations (b-d) and control (a)
a) control b) 1.5 mM EMS
d) 0.5 mM EMS d) 0.5 mM DES
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
99
glory seeds (Ipomea purpurea) at each concentration
selected for testing mutagens. While, Koh and Davies
(2001) used to induce mutations in 1000 seeds Tillandisia
faciculata for any combination of experiment.
The chemical mutagens applied in the experiment,
significantly reduced the germination of seeds of M3
generation of petunia. The lowest germination energy of
seeds were observed after a treatment of 1.0 mM solution
of SA (16%), the highest (59%) by using - 1.5 mM EMS.
The weakening of germination on very similar level
(averaging 12%) was also observed in the M2 generation
of petunia by Krupa-Malkiewicz (2009). However, in studies
made by Rzepka-Plevnes et al. (1998, 2004) germination
of seeds were 84% in M1 and 73% M2 generations of Petunia
x hybryda.
Chemical mutagens used to induced mutation had
a stimulating effect on the plant height and number of
flowers. Differences between petunia M3 mutants and
control were proved statistically (Tab. 1). The longest shoots
(220% control) were obtained in mutants of petunia M3
generation, which grew from seeds treated with EMS
solution at a concentration of 0.5 mM, the shortest (115%
of control) - AS solution at a concentration of 1.5 mM.
However, the greatest number of flowers were obtained in
petunia mutants derived from seeds treated solution of 0.5
mM EMS (520% of control), and the smallest - 1.5 mM AS
(210% of control). Similar results were obtained for the
petunia by Napoli and Ruehle (1996), Rzepka-Plevneš et
al. (2004) and Krupa-Ma³kiewicz (2009).
SA, EMS and MMS mutagens have a negative
influence on the number of flower buds (Tab. 1). However,
plants derived from seeds treated with DES showed a
clearly higher amount compared to the control number of
flower buds, regardless of the concentration (142-175%
controls).
In addition to morphological change caused by the
chemical mutagens, discoloration of pigments in flowers,
as well as chlorophyll changes on the leaves and a return
of crown-shaped petals were also observed (Phot. 1). Their
frequency were respectively 53%, 27% and 20% and were
lower than in the M1 (73.6%, 5.4%, 21%) and M2 generation
(50%, 5.5%, 44.5%). Most of these changes were observed
in mutant M3 grown from seeds treated with 0.5 mM solution
of EMS (30%) and DES (27% of total phenotypic changes).
Phenotypic changes obtained in petunia may have
a dominant character. Plants with similar characteristics
were also observed in the M1 and M2 generations (Krupa-
Ma³kiewicz, 2009). Similar changes in the colour of flowers
Òàáëèöà 1. Âèñî÷èíà íà ðàñòåíèÿòà (cm), áðîé öâåòíè ïúïêè è öâåòîâå íà ðàñòåíèå îò ïåòóíèÿ Ì3 ïîêîëåíèå
ñëåä òðåòèðàíå ñ ðàçëè÷íè êîíöåíòðàöèè îò ìóòàãåíè
Table 1. Plant height (cm), number of flower buds and flowers per plant of petunia M3
generation after treatments of
different concentration of mutagens
Morphological traits
mutagen
concentration
(mM)
plant height (cm)
number of flower
buds
number of flowers
control 0.0 15.0 ab* 5.5 b 2.0 b
DES
0.5 30.0 a 9.5 a 10.5 a
1.0 22.5 ab 8.0 ab 6.0 ab
NIR 14.6 3.2 5.3
control 0.0 15.0 ab 5.5 a 2.0 b
MMS
1.5 29.0 a 3.5 a 11.0 a
2.0 24.4 ab 5.4 a 5.5 b
NIR 14.6 3.2 5.3
control 0.0 15.0 b 5.5 b 2.0 b
EMS
0.5 32.7 a 4.0 a 10.6 a
1.5 20.0 ab 6.8 a 8.1 a
NIR 14.6 3.2 5.3
control 15.0 a 5.5 a 2.0 ab
AS
1.0 20.0 a 6.5 a 8.0 a
1.5 17.2 a 3.4 a 4.4 ab
NIR 14.6 3.2 5.3
*a, b – difference significant at α = 0.05
100
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
were noted after physical mutagenesis in chrysanthemum
by Mandal et al. (2000) as well as Latado et al. (2004),
after chemical mutagenesis in kalanchoe by Krupa-
Malkiewicz (2010 in press). The effect of EMS and gamma
radiation on the formation of chlorophyll mutants or chimeras
were described in Tilandsii fasciculata var. fasciculata
(Bromeliaceae) by Koh i Davies (2001).
The genetic differences between control and mutants
of petunia were determined using the ISSR-PCR technique
(Zietkiewicz et al., 1994). Among 15 primers, 7: (GA)8A,
(GA)8T, (AG)8G, (AC)8C, (AC)8G, (GGGTG)3, (GA)8GT,
amplified the ISSR-PCR products. In total within the ISSRPCR
reaction, 403 ISSR products were amplified. The highest
number of polymorphic bands (80, 66, 60) were obtained by
using (GA)8A, (AC)8G and (GA)8T primers (respectively), while
accession-specific products were observed by means of
(GA)8T (4), (GA)8A (3) and (AC)8C (3).
CONCLUSIONS
1. The highest frequency of phenotypic changes in the
M3 generation of petunia was obtained after 0.5 mM
EMS (30%) and DES (27% of the total phenotypic
changes) treatments.
2. The frequency of morphological changes observed
after mutagenesis was 53% - in the case of pigment
changes in flowers, 27% - of chlorophyll changes on
the leaves and 20% of the return of crown-shaped
petals.
3. Chemical mutagens used to induce mutation had a
stimulating effect on the plant height and number of
flowers. SA, EMS and MMS mutagens have a negative
influence on the number of flower buds.
4. The analysis of DNA polymorphism carried out by
ISSR-PCR technique, showed significant differences
within the microsatellite sequence from the M3 petunia
mutants and the control.
REFERENCES
Ahloowalia, B. S., Maluszynski M., 2001. Induced
mutations. A new paradigm in plant breeding. –
Euphytica, 118: 167-173.
Berenschot, A. S., Zucchi M. I., Tulmann-Neto A., Quecini
V., 2008. Mutagenesis in Petunia x hybrida Vilm. and
isolation of a novel morphological mutant. – Braz. J.
Plant Physiol., 20 (2): 16-27.
Bhagwat, B., Duncan E. J., 1998. Mutation breeding of
banana cv. Highgate (Musa spp., AAA Group) for
tolerance to Fusarium oxysporum f. sp. cubense using
chemical mutagens. – Sci. Hort., 73: 11-22.
Bhate, R. H., 2001. Chemically induced floral morphological
mutations in two cultivars of Ipomoea purpurea (L.) Roth.
– Sci. Hort., 88: 133-145.
Jain, S. M., 2006. Mutation-Assisted Breeding for Improving
Ornamental Plants. – Acta Hort., 714: 85-98.
Koh, Y. C., Davies F. T., 2001. Mutagenesis and in vitro
culture of Tillandsia fasciculata Swartz var. fasciculata
(Bromeliaceae). – Sci. Hort., 87: 225-240.
Krupa-Malkiewicz, M., 2009. Influence of chemical
mutagens on morphological traits in petunia (Petunia ×
atkinsiana D. Do.). – Biul. IHAR, 251: 305-314, in polis.
Krupa-Malkiewicz, M., 2010. Influence of chemical
mutagens on morphological traits in kalanchoe
(Kalanchoe hybrida). – Folia Univ. Agr. Stetin., Agric.
(in press).
Latado, R. R., Adames A. H., Neto A. T., 2004. In vitro
mutation of chrysanthemum (Dendranthema grandiflora
Tzvelev) with ethylmethanesulphonate (EMS) in
immature floral pedicels. – Plant Cell, Tiss. Org. Cult.,
77: 103-106.
Mandal, A. K. A., Chakrabarty D., Datta S. K., 2000.
Application of in vitro techniques in mutation breeding
of chrysanthemum. – Plant Cell, Tiss. Org. Cul., 60:
33-38.
Napoli, C. A., Ruehle J., 1996. New mutations affecting
meristem growth and potential in Petunia hybrida. – J
Hered, 87: 371–377.
Rzepka–Plevnes, D., Misiak K., Skrzypiec K., 1998.
Influence of sodium aside on phenotype traits in petunia
(Petunia x hybrida). – Zesz. Nauk. Akad. Rol. im. H.
Koll¹taja w Krakowie, 33: 769-772, in polish.
Rzepka–Plevnes, D., Smolik M., Chochlowska A., Krupa–
Ma³kiewicz M., 2004. Molecular characteristic of
selected groups of plants of the M1 generation of petunia
(Petunia x hybrida) using the ISSR markers. – Folia
Univ. Agric. Stetin., Agric., 242 (98): 157-160, in polish.
Sakin, M. A., Yilirim A., 2004. Induced mutations for yield
and its components in durum wheat (Triticum durum
Desf.). – JFAE, 2(1): 285-290.
Vagera, J., Nowotny J., Ohnoutkova L., 2004. Induced
androgenesis in vitro in mutated populations of barley,
Hordeum vulgare. – Plant Cell, Tiss. Org. Cult., 77: 55-
61.
Van Harten, A. M., 1978. Mutation breeding techniques and
behaviour or irradiated shoot apices of potato.
Wageningen, Centre for Agric. Publ. Document., 1987,
s.132.
Zietkiewicz, E., Rafalski A., Labuda D., 1994. Genome
fingerprinting by simple sequence repeat (SSR) –
anchored polymerase Chain Reaction amplification. –
Genetics, 20: 176-183.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Íåâåíà Ñòîåâà
E-mail: stoeva_au_bg@yahoo.ca
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
101
ÂËÈßÍÈÅ ÍÀ GSM900 ÅËÅÊÒÐÎÌÀÃÍÈÒÍÈ ÏÎËÅÒÀ ÂÚÐÕÓ ÏÀÐÀÌÅÒÐÈ ÍÀ ÕËÎÐÎÔÈËÍÀÒÀ
ÔËÓÎÐÅÑÖÅÍÖÈß ÏÐÈ ÊÓËÒÓÐÍÈÒÅ ÐÀÑÒÅÍÈß ÏØÅÍÈÖÀ, ÖÀÐÅÂÈÖÀ È ÃÐÀÕ
EFFECTS OF GSM900 ELECTROMAGNETIC FIELDS ON SOME PARAMETERS OF CHLOROPHYLL
FLUORESCENCE IN CROP PLANTS WHEAT, MAIZE AND PEAS
Ìàðãàðèòà Êóçìàíîâà1*, Ìàðèÿ Ãóðìàíîâà1, Ñàâèíà Òèí÷åâà1, Âàñèëèé Ãîëöåâ1,
Ãàáðèåëà Àòàíàñîâà2, Íèêîëàé Àòàíàñîâ3
Margarita Kouzmanova1*, Maria Gurmanova1, Savina Tincheva1, Vasilij Goltsev1,
Gabriela Atanasova2, Nikolai Atanasov3
1Êàòåäðà “Áèîôèçèêà è ðàäèîáèîëîãèÿ”, Áèîëîãè÷åñêè ôàêóëòåò
Ñîôèéñêè óíèâåðñèòåò „Ñâ. Êë. Îõðèäñêè”
2Êàòåäðà “Òåëåêîìóíèêàöèîííè òåõíîëîãèè”
3Êàòåäðà “Áåçæè÷íè êîìóíèêàöèè è ðàçïðúñêâàíå”
ÂÄÓ „Êîëåæ ïî òåëåêîìóíèêàöèè è ïîùè”
1Department of Biophysics and Radiobiology
Biological Faculty, Sofia University
2Department of Telecommunication Technologies
3Department of Wireless Communications and Broadcasting
Higher College of Telecommunications and Posts
*E-mail: kouzmanova@biofac.uni-sofia.bg
Ðåçþìå
Ïðåç ïîñëåäíèòå ãîäèíè íàðàñòâà èíòåðåñúò êúì åôåêòèòå íà åëåêòðîìàãíèòíè ïîëåòà (ÅÌÏ), èçëú÷âàíè
îò ìîáèëíè òåëåôîíè, âúðõó ðàñòåíèÿ. Ðåçóëòàòèòå ïîêàçâàò, ÷å ðàñòåíèÿòà ðåàãèðàò íà òåçè ÅÌÏ êàòî íà ñòðåñîâ
ôàêòîð. Õëîðîôèëíàòà ôëóîðåñöåíöèÿ å èíôîðìàòèâåí ïîêàçàòåë çà èçñëåäâàíå íà åôåêòèòå íà ñëàáè ñòðåñîðè
âúðõó ôîòîñèíòåòè÷íèÿ àïàðàò in vivo è in situ. Öåëòà íà íàñòîÿùîòî ïðîó÷âàíå å äà ñå èçñëåäâàò åôåêòèòå íà
ðàçëè÷íè óñëîâèÿ íà îáëú÷âàíå ñ GSM900 ÅÌÏ âúðõó ïàðàìåòðè íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ ïðè ðàçëè÷íè
âèäîâå êóëòóðíè ðàñòåíèÿ – ïøåíèöà (Triticum aestivum L.), öàðåâèöà (Zea mays L.) è ãðàõ (Pisum sativum L.).
Èíäóêöèîííèòå êðèâè íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ ñà çàïèñâàíè ñ ôëóîðèìåòúð Handy PEA
(Hansatech Instruments Ltd, UK). Àíàëèçèðàíè ñà íÿêîè ïàðàìåòðè íà JIPòåñòà.
Íàáëþäàâàíèòå åôåêòè íà 900 MHz ÅÌÏ, èçëú÷âàíî îò ìîáèëíè òåëåôîíè, çàâèñÿò îò âèäà íà ðàñòåíèåòî,
îò âðåìåòî íà âúçäåéñòâèå ñ ÅÌÏ è ñå çàïàçâàò èçâåñòíî âðåìå ñëåä ïðåêðàòÿâàíå íà âúçäåéñòâèåòî. Îò äâàòà
âèäà ðàñòåíèÿ ñ ðàçëè÷åí ìåõàíèçúì íà ÑÎ2 ôèêñàöèÿ öàðåâèöàòà (Ñ4) ïîêàçâà ïî-ãîëÿìà ÷óâñòâèòåëíîñò îò
ïøåíèöàòà (Ñ3) êúì 900 MHz ÅÌÏ ïðè èçñëåäâàíèòå óñëîâèÿ íà åêñïîíèðàíå. Âúçäåéñòâèåòî ïðåç òúìíèÿ ïåðèîä
ñ GSM900 ÅÌÏ, ñèìóëèðàùî èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ÷àñ ïèê, íå ïðåäèçâèêâà ñòðåñ â ãðàõîâèòå ðàñòåíèÿ,
îöåíåí ïî ïàðàìåòðèòå íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ.
Abstract
For some years now the interest in the effects of mobile phones electromagnetic fields (EMF) on plants has been
increasing steadily. The results show that plants respond to these EMFs as to a stress factor. Chlorophyll fluorescence is
a sensitive and information-rich method for investigation of the effects of weak stressors of the photosynthetic process in
vivo and in situ.
The aim of our study was to investigate the effects of different conditions of exposure to GSM900 EMF on some
parameters of chlorophyll fluorescence in different crop plants: wheat (Triticum aestivum L.), maize (Zea mays L.) and peas
(Pisum sativum L.).
The induction curves of prompt chlorophyll fluorescence were recorded with the fluorimeter Handy PEA (Plant
Efficiency Analyser, Hansatech Instruments Ltd, UK). Some parameters of the JIP-test were analyzed.
102
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
The observed effects of 900 MHz EMF emitted by mobile phones depended on the plant species, duration of
exposure to EMF and time elapsed after the end of exposure. Out of the two species of plants with different mechanisms of
CO2 fixation, maize (C4) showed greater sensitivity to 900 MHz EMF compared to wheat (C3) under the investigated
exposure conditions.
Dark period exposure to GSM900 EMF, simulating radiation from a base station during rush hours, did not induce
stress in pea plants estimated by prompt chlorophyll fluorescence parameters
Êëþ÷îâè äóìè: 900 MHz åëåêòðîìàãíèòíî ïîëå, ìîáèëíè òåëåôîíè, êóëòóðíè ðàñòåíèÿ, ñòðåñ, õëîðîôèëíà
ôëóîðåñöåíöèÿ.
Key words: 900 MHz electromagnetic fields, mobile phones, crop plants, stress, chlorophyll fluorescence.
ÂÚÂÅÄÅÍÈÅ
Áúðçîòî ðàçâèòèå íà ìîáèëíèòå êîìóíèêàöèè
âîäè äî óâåëè÷àâàíå íà áðîÿ áàçîâè ñòàíöèè èçâúí
íàñåëåíèòå ìåñòà. Ôëîðàòà è ôàóíàòà îêîëî òÿõ ñà
èçëîæåíè íà èçëú÷âàíèòå åëåêòðîìàãíèòíè ïîëåòà
(ÅÌÏ). Ïðåç ïîñëåäíèòå ãîäèíè íàðàñòâà èíòåðåñúò íà
ó÷åíèòå êúì åôåêòèòå íà ÅÌÏ îò ìîáèëíè òåëåôîíè
âúðõó ðàñòåíèÿ. Ðåçóëòàòèòå îò ïðîâåäåíèòå èçñëåäâàíèÿ
ïîêàçâàò, ÷å ðàñòåíèÿòà ðåàãèðàò íà òåçè ÅÌÏ
êàòî íà ñòðåñîâ ôàêòîð (Beaubois, 2007; Roux, 2008;
T.Selga and M.Selga, 1996; Tafforeau, 2004; Tkalec, 2005,
2007; Vian, 2006).
Èìà äàííè çà èçìåíåíèå íà êîíöåíòðàöèèòå
íà ïèãìåíòè â ðàñòåíèÿ, îáëú÷åíè ñ ðàäèî÷åñòîòíè
ÅÌÏ. Sandu et al. îáëú÷âàò ôèäàíêè íà áÿëà àêàöèÿ
(Robinia pseudoacacia L.) ñ 400 MHz ÅÌÏ â ïðîäúëæåíèå
íà 1, 2, 3 è 8 ÷àñà äíåâíî 3 ñåäìèöè è óñòàíîâÿâàò
óâåëè÷àâàíå íà êîíöåíòðàöèèòå íà õëîðîôèë a è
õëîðîôèë b â ëèñòàòà ñëåä 2-÷àñîâîòî âúçäåéñòâèå è
íàìàëÿâàíå ïðè âñè÷êè îñòàíàëè âðåìåíà íà
âúçäåéñòâèå. Îòíîøåíèåòî íà äâàòà âèäà õëîðîôèë
íàìàëÿâà ëîãàðèòìè÷íî ñ óâåëè÷àâàíå íà âðåìåòî íà
îáëú÷âàíå [Sandu, 2005]. Åäíîêðàòíî åäíî÷àñîâî
îáëú÷âàíå íà äåêîðàòèâíè ðàñòåíèÿ (Plectranthus sp.)
ñ 900 MHz ÅÌÏ, èçëú÷âàíî îò ìîáèëåí òåëåôîí, âîäè
äî ïîíèæàâàíå íà ñúäúðæàíèåòî íà õëîðîôèë à íà
2-ðèÿ è 24-òèÿ ÷àñ, íà êàðîòåíîèäèòå – äî 2-ðèÿ ÷àñ ñëåä
ïðåêðàòÿâàíå íà âúçäåéñòâèåòî [Kouzmanova, 2009].
Åäíîêðàòíî îáëú÷âàíå â ïðîäúëæåíèå íà 1 ÷àñ ñ 900
MHz ÅÌÏ íå ïðåäèçâèêâà ïðîìåíè â êîíöåíòðàöèèòå
íà ïèãìåíòèòå ïðè ïøåíèöàòà (Triticum aestivum), íî íà
48-ìèÿ ÷àñ ñëåä äâó÷àñîâî âúçäåéñòâèå ñå ðåãèñòðèðà
óâåëè÷àâàíå íà êîíöåíòðàöèèòå íà õëîðîôèë à è íà
êàðîòåíîèäèòå [Dimitrova, 2009]. Ïðè öàðåâèöà (Zea
mays) ñå ðåãèñòðèðà óâåëè÷àâàíå íà êîëè÷åñòâîòî
õëîðîôèë ñëåä 1 ÷àñ åêñïîíèðàíå íà 900 ÅÌÏ è ëèïñà
íà åôåêò ñëåä 2 ÷àñà âúçäåéñòâèå [íåïóáëèêóâàíè
äàííè]. Òåçè ðåçóëòàòè ïîêàçâàò, ÷å èçìåíåíèÿòà â
êîíöåíòðàöèèòå íà ïèãìåíòèòå çàâèñÿò îò âèäà íà
ðàñòåíèåòî, îò âðåìåòî íà âúçäåéñòâèå, êàêòî è îò
âðåìåòî, èçìèíàëî ñëåä ïðåêðàòÿâàíå íà âúçäåéñòâèåòî.
Schmutz et al. [1996] èçñëåäâàò äúëãîñðî÷íèòå
åôåêòè îò îáëú÷âàíå íà ñìúð÷ (Picea abies (L.) Karst.)
è áóê (Fagus silvatica L.) ñ 2.45 GHz ÅÌÏ. Õëîðîôèëíàòà
ôëóîðåñöåíöèÿ íà áóêîâèòå ëèñòà å èçïîëçâàíà êàòî
áúðç ìåòîä çà ïîëó÷àâàíå íà èíôîðìàöèÿ çà
ôóíêöèîíèðàíåòî íà ôîòîñèíòåòè÷íèÿ àïàðàò (ÔÑÀ).
Íå å óñòàíîâåíî óâðåæäàíå íà ÔÑÀ, ïðåäèçâèêàíî îò
ìèêðîâúëíîâîòî îáëú÷âàíå. Åäèíñòâåíèÿò åôåêò îò
îáëú÷âàíåòî å ïîíèæàâàíå íà êîíöåíòðàöèèòå íà
êàëöèé è ñÿðà â áóêîâèòå ëèñòà ñ óâåëè÷àâàíå íà
ïëúòíîñòòà íà ìîùíîñòòà íà ïîëåòî. Â äîñòúïíàòà
ëèòåðàòóðà íÿìà äðóãè äàííè çà âëèÿíèåòî íà ÅÌÏ
âúðõó ïàðàìåòðè íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ.
Ôîòîñèíòåòè÷íèÿò àïàðàò íà âèñøèòå ðàñòåíèÿ
èìà ñëîæíà ñòðóêòóðà è å ìíîãî ÷óâñòâèòåëåí êúì
ñòðåñîâè âúçäåéñòâèÿ. Òîé ïîìàãà íà ðàñòåíèÿòà äà
ïîñòèãíàò îïòèìàëíî ôóíêöèîíèðàíå ïðè íåïðåêúñíàòî
ïðîìåíÿùèòå ñå óñëîâèÿ íà îêîëíàòà ñðåäà.
Õëîðîôèëíàòà ôëóîðåñöåíöèÿ å ìíîãî ÷óâñòâèòåëåí è
èíôîðìàòèâåí ïîêàçàòåë, ïîäõîäÿù çà èçñëåäâàíå íà
åôåêòèòå íà ñëàáè ñòðåñîðè âúðõó ôîòîñèíòåòè÷íèÿ
àïàðàò in vivo è in situ. Òîçè ìåòîä ïîçâîëÿâà íà
íåîòêúñíàò ëèñò îò öÿëî ðàñòåíèå äà ñå èçìåðâàò
èíäóêöèîííè êèíåòèêè íà áúðçàòà è çàáàâåíàòà
õëîðîôèëíà ôëóîðåñöåíöèÿ è äà ñå îõàðàêòåðèçèðàò
ðàçëè÷íè ó÷àñòúöè íà ôîòîñèíòåòè÷íàòà åëåêòðîíòðàíñïîðòíà
âåðèãà è åôåêòèâíîñòòà íà ðàáîòàòà íà
ÔÑÀ êàòî öÿëî. Òîâà ãî ïðàâè èçêëþ÷èòåëíî ïîäõîäÿù
çà àíàëèç íà äèíàìèêàòà íà ñòðåñîâèÿ îòãîâîð ïî âðåìå
íà ðàñòåæà è ðàçâèòèåòî íà ðàñòåíèåòî.
Çà äà ñå èçÿñíÿò åôåêòèòå îò âúçäåéñòâèåòî íà
ÅÌÏ, èçëú÷âàíè îò ìîáèëíè òåëåôîíè, å íåîáõîäèìî
ïðîâåæäàíå íà åêñïåðèìåíòè ñ ðàçëè÷íè ðàñòåíèÿ ñúñ
ñòîïàíñêî çíà÷åíèå. Îñîáåíî âàæíî å ïðèëàãàíåòî íà
íåèíâàçèâíè áèîôèçè÷íè ìåòîäè çà ïðîñëåäÿâàíå íà
ìîëåêóëíî íèâî íà ôèçèîëîãè÷íàòà ðåàêöèÿ íà
ðàñòåíèÿòà in vivo è in situ. Èíòåðåñ ïðåäñòàâëÿâà
ñðàâíåíèåòî íà ñòðåñîâàòà ðåàêöèÿ â ðàñòåíèÿ ñ
ðàçëè÷åí òèï âúãëåðîäåí ìåòàáîëèçúì è ðàçëè÷íà
åôåêòèâíîñò íà ôîòîñèíòåçàòà (Ñ3 è Ñ4 ðàñòåíèÿ).
Öåëòà íà íàñòîÿùîòî ïðîó÷âàíå å äà ñå
èçñëåäâàò åôåêòèòå íà ðàçëè÷íè óñëîâèÿ íà îáëú÷âàíå
ñ GSM900 åëåêòðîìàãíèòíî ïîëå âúðõó ïàðàìåòðè íà
õëîðîôèëíàòà ôëóîðåñöåíöèÿ ïðè ðàçëè÷íè âèäîâå
êóëòóðíè ðàñòåíèÿ – ïøåíèöà, öàðåâèöà è ãðàõ.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
103
Ïðîñëåäåíî å âëèÿíèåòî íà åäíîêðàòíî îáëú÷âàíå ñ
ÅÌÏ, ñúçäàâàíî îò ìîáèëåí òåëåôîí (ñòàíäàðò GSM
900), âúðõó õëîðîôèëíàòà ôëóîðåñöåíöèÿ íà êóëòóðíè
ðàñòåíèÿ ñ ðàçëè÷åí ìåõàíèçúì íà ÑÎ2 ôèêñàöèÿ –
ïøåíèöà (Triticum aestivum) (Ñ3) è öàðåâèöà (Zea mays)
(Ñ4) íà ðàçëè÷íè ñðîêîâå ñëåä ïðåêðàòÿâàíå íà
âúçäåéñòâèåòî, êàêòî è åôåêòèòå íà ïðîäúëæèòåëíî
îáëú÷âàíå ñ ÅÌÏ, ñèìóëèðàùî èçëú÷âàíå îò áàçîâà
ñòàíöèÿ â ðåæèì íà ìàêñèìàëíî íàòîâàðâàíå, âúðõó
ãðàõîâè ðàñòåíèÿ (Pisum sativum L.), íèñêîðàñúë ñîðò
ÐÀÍ-1.
ÌÀÒÅÐÈÀËÈ È ÌÅÒÎÄÈ
Îòãëåæäàíå íà ðàñòåíèÿòà
Âñè÷êè ðàñòåíèÿ ñà îòãëåæäàíè êàòî âîäíà
êóëòóðà â õðàíèòåëåí ðàçòâîð (ÊÍÎÏ).
Ïøåíèöàòà å îòãëåæäàíà ïðè åñòåñòâåíè
óñëîâèÿ. Öàðåâèöàòà å îòãëåæäàíà âúâ ôèòîñòàòíà
êàìåðà ïðè ñòàéíà òåìïåðàòóðà, îñâåòÿâàíå 250 μmol
m–2s–1 è äåíîíîùåí ðåæèì 12h ñâåòëî/12h òúìíî.
Ãðàõîâèòå ðàñòåíèÿ ñà îòãëåæäàíè âúâ ôèòîñòàòíà
êàìåðà ïðè ñòàéíà òåìïåðàòóðà, îñâåòåíîñò 160 μmol
m–2s–1 è ôîòîïåðèîä 12/12 h.
Îáëú÷âàíå ñ 900 MHz ÅÌÏ
Îáëú÷âàíåòî íà ïøåíèöàòà ñ 900 MHz ÅÌÏ å
ïðîâåæäàíî íà 7-ìèÿ äåí ñëåä çàñàæäàíåòî, à íà
öàðåâèöàòà – íà 10-òèÿ äåí. Öåëèòå ðàñòåíèÿ ïøåíèöà
è öàðåâèöà ñà îáëú÷âàíè åäíîêðàòíî â ïðîäúëæåíèå
íà 1 ÷àñ èëè 2 ÷àñà ñ GSM ìîáèëåí òåëåôîí òèï NSM-
3 (Nokia), êîéòî å ñâúðçàí ñ êîìïþòúð è ïîñðåäñòâîì
ñïåöèàëåí ñîôòóåð èçëú÷âà ÅÌÏ ñ íîñåùà ÷åñòîòà 902
MHz è ñòàíäàðòíà GSM ìîäóëàöèÿ. GSM ñèãíàëúò å ñ
ïðîäúëæèòåëíîñò íà èìïóëñà 577 μs, êîåòî ñúîòâåòñòâà
íà åäèí âðåìåâè èíòåðâàë íà TDMA öèêúë (Time Division
Multiple Access – ìíîæåñòâåí äîñòúï ñ ðàçäåëÿíå ïî
âðåìå) ñ ïðîäúëæèòåëíîñò 4.615 ms. Èçõîäíàòà
ìîùíîñò íà èìïóëñà íà ìîáèëíèÿ òåëåôîí å 2 W.
Ðàñòåíèÿòà ñà ïîñòàâÿíè íà 20 cm îò àíòåíàòà íà
òåëåôîíà. Íà ðàçëè÷íè ñðîêîâå ñëåä ïðåêðàòÿâàíå íà
îáëú÷âàíåòî – âåäíàãà ñëåä âúçäåéñòâèåòî, íà 1, 2, 24
è 48 ÷àñ, ñà èçìåðâàíè ôîòîñèíòåòè÷íàòà àêòèâíîñò è
ñòðóêòóðíî-ôóíêöèîíàëíèòå õàðàêòåðèñòèêè íà
Ôîòîñèñòåìà 2.
 ñúùîòî âðåìå êîíòðîëíèòå ðàñòåíèÿ ñà
ïîñòàâÿíè ïðè ñúùèòå óñëîâèÿ íà òåìïåðàòóðà,
îñâåòÿâàíå è âëàæíîñò, íî áåç îáëú÷âàíå.
Åäíî îò îñíîâíèòå èçèñêâàíèÿ ïðè ïðîâåæäàíå
íà åêñïåðèìåíòè ñ áèîëîãè÷íè îáåêòè å òå äà áúäàò
èçîëèðàíè îò âëèÿíèåòî íà äðóãè ïîëåòà, êàêòî è
ñòðèêòíî äà ñå êîíòðîëèðàò ïàðàìåòðèòå íà
èçñëåäâàíîòî ïîëå. Çà òàçè öåë ïðîó÷âàíèòå îáåêòè
òðÿáâà äà áúäàò ïîñòàâÿíè â êàìåðè, èçîëèðàíè îò
âúíøíè ÅÌÏ. Çà èçâúðøâàíå íà áèîëîãè÷íè
èçñëåäâàíèÿ ïðè êîíòðîëèðàíè óñëîâèÿ íà ÅÌ
îáëú÷âàíå áå êîíñòðóèðàíà êàìåðà çà îáëú÷âàíå,
áàçèðàíà íà îáåìåí ðåçîíàòîð. Òÿ îñèãóðÿâà
õîìîãåííîñò íà åëåêòðè÷åñêîòî ïîëå. Çà îáåêòèòå,
ïîñòàâåíè â òàçè êàìåðà, ìîæå ñ äîñòàòú÷íî äîáðà
òî÷íîñò äà ñå îïðåäåëè ïîãúëíàòàòà äîçà. Ðàçìåðèòå
íà êàìåðàòà (128 mm) íàëàãàò îãðàíè÷åíèÿ â ðàçìåðèòå
íà èçñëåäâàíèòå îáåêòè. Îáåêò ñ ïîäõîäÿùè ðàçìåðè
çà îáëú÷âàíå ñ ÅÌÏ â òàçè êàìåðà å íèñêîðàñëèÿò ñîðò
ãðàõ (Pisum sativum L.) ÐÀÍ–1.
Ðàñòåíèÿòà ñà ðàçäåëåíè íà 3 ãðóïè ïî 5
ðàñòåíèÿ – êîíòðîëà, ëúæëèâî åêñïîíèðàíè è
åêñïîíèðàíè. Íàïðàâåíè ñà ïî 4 ïîâòîðåíèÿ. Ëúæëèâî
åêñïîíèðàíèòå è åêñïîíèðàíèòå ðàñòåíèÿ ñà ïîñòàâÿíè
â êàìåðàòà 30 min ñëåä íà÷àëîòî íà òúìíèÿ ïåðèîä çà
1 ÷àñ íà äåí îò ïúðâèÿ äåí ñëåä òÿõíîòî çàñàæäàíå äî
14-òèÿ äåí. Åêñïîíèðàíèòå ðàñòåíèÿ ñà îáëú÷âàíè â
ïðîäúëæåíèå íà 14 äíè ïî 1 ÷àñ íà äåí ñ õîìîãåííà
åëåêòðè÷íà êîìïîíåíòà 42,6 V/m íà 947,5 MHz
íåïðåêúñíàòî ÅÌÏ, êîåòî èìèòèðà èçëú÷âàíå îò áàçîâà
ñòàíöèÿ (ÁÑ) â ÷àñ ïèê. ÁÑ èçëú÷âàò ñ ìàêñèìàëíà
ìîùíîñò â ïåðèîäà ñ íàé-ãîëÿì òðàôèê (÷àñ ïèê), êîéòî
å ñúñ ñðåäíà ïðîäúëæèòåëíîñò 1 ÷àñ íà äåí. Ïðåç òîçè
ïåðèîä èçëú÷âàíåòî å ïðàêòè÷åñêè íåïðåêúñíàòî.
Èíäóêöèîííèòå êðèâè íà áúðçàòà õëîðîôèëíà
ôëóîðåñöåíöèÿ ñà çàïèñâàíè ñëåä ïúëíîòî
ðàçëèñòâàíå, îò 10-òèÿ äî 14-òèÿ äåí ñëåä çàñàæäàíåòî,
çà âñÿêî îò 5-òå ðàñòåíèÿ â ãðóïàòà, íà öÿë íåîòêúñíàò
ëèñò îò ðàñòåíèåòî, íåïîñðåäñòâåíî ïðåäè è ñëåä
åêñïîíèðàíåòî èëè ëúæëèâîòî åêñïîíèðàíå. Çà
êîíòðîëíàòà ãðóïà èçìåðâàíèÿòà ñà ïðàâåíè 30 min è
1,5 ÷àñà ñëåä íà÷àëîòî íà òúìíèÿ ïåðèîä.
Èíäóêöèîííè êðèâè íà áúðçàòà õëîðîôèëíà
ôëóîðåñöåíöèÿ
Èíäóêöèîííèòå êðèâè íà áúðçàòà õëîðîôèëíà
ôëóîðåñöåíöèÿ ñà çàïèñâàíè ñ ôëóîðèìåòúð Handy
PEA (Plant Efficiency Analyser, Hansatech Instruments Ltd,
King’s Lynn, Norfolk, UK).
Èíäóêöèîííàòà êðèâà (ÈÊ) íà áúðçàòà
ôëóîðåñöåíöèÿ (ÁÔ) ñå õàðàêòåðèçèðà ñúñ ñòîéíîñòè
íà ôëóîðåñöåíöèÿòà âúâ ôàçèòå O, J, I è P (îòáåëÿçâàíè
íà ÈÊ ñúîòâåòíî êàòî F0, FJ, FI è FP). Òå ñà ñâúðçàíè ñ
ïðîìåíè â íèâîòî íà ðåäóöèðàíîñò íà QA – ïúðâè÷íèÿ
õèíîíîâ àêöåïòîð íà åëåêòðîíè âúâ Ôîòîñèñòåìà II (ÔÑ
II), êîåòî ñå ïðîìåíÿ ïðè îñâåòÿâàíå, ïðåìèíàâàéêè ïðåç
íÿêîëêî ìåæäèííè ñòàöèîíàðíè ñúñòîÿíèÿ
(êâàçèñòàöèîíàðíè ñúñòîÿíèÿ). Íà÷àëíîòî íèâî íà
ôëóîðåñöåíöèÿ (F0) ñúîòâåòñòâà íà òúìíèííî ñúñòîÿíèå
íà ÔÑÀ ïðè èçöÿëî îòâîðåíè ðåàêöèîííè öåíòðîâå íà
ÔÑ II, ò.å. èçöÿëî îêèñëåí QA, è ìàêñèìàëíà
åôåêòèâíîñò íà ïúðâè÷íàòà ôîòîõèìè÷íà ðåàêöèÿ.
Ôàçàòà J ñå ïîÿâÿâà ïðè óñòàíîâÿâàíå íà ðàâíîâåñèå
ìåæäó ñêîðîñòòà íà ïîäàâàíå íà åëåêòðîíè îò P680 êúì
104
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
QA, îò åäíà ñòðàíà, è, îò äðóãà – ñêîðîñòòà íà
ðåîêèñëåíèåòî íà QA
– îò ïëàñòîõèíîíîâèÿ ïóë. Íèâîòî
J, íàáëþäàâàíî íà âòîðàòà ìèëèñåêóíäà íà
îñâåòÿâàíåòî, îòðàçÿâà åôåêòèâíîñòòà íà ïðåíîñà íà
åëåêòðîíè ïî ôîòîñèíòåòè÷íàòà åëåêòðîí-òðàíñïîðòíà
âåðèãà (ÔÑ ÅÒÂ) â àêöåïòîðíàòà ñòðàíà íà ÔÑ II, a
ôëóîðåñöåíòíîòî íèâî íà ôàçàòà I – åëåêòðîííèÿ
ïðåíîñ îò ðåäóöèðàíèÿ ïëàñòîõèíîí (PQ.H2) ïðåç P700
êúì àêöåïòîðèòå íà ôîòîñèñòåìà I (ÔÑ I) (îêèñëåíèÿ
ÍÀÄÔ). Ôàçàòà I õàðàêòåðèçèðà ðàâíîâåñèåòî ìåæäó
åëåêòðîííèòå ïîòîöè êúì è îò ïëàñòîõèíîíîâèÿ ïóë.
Íèâîòî íà òîâà ðàâíîâåñèå õàðàêòåðèçèðà ñïîñîáíîñòòà
íà ÔÑ I (è íàé-âå÷å íà íàëè÷íèòå åëåêòðîííè àêöåïòîðè
íà ÔÑ I) äà îêèñëÿâà ðåäóöèðàíèòå ôîðìè íà PQ.
Ïðåõîäúò I – P îòðàçÿâà ôîòîèíäóöèðàíàòà ðåäóêöèÿ
íà òåçè àêöåïòîðè.
Îò ñòîéíîñòèòå íà ôëóîðåñöåíöèÿòà â
õàðàêòåðèñòè÷íèòå òî÷êè ìîæå äà ñå ïðåñìåòíàò
êâàíòîâèòå äîáèâè íà òðàíñôîðìàöèÿ íà åíåðãèÿòà:
• ìàêñèìàëåí êâàíòîâ äîáèâ íà ïúðâè÷íàòà
ôîòîõèìè÷íà ðåàêöèÿ â ðåàêöèîííèÿ öåíòúð íà
ÔÑ II: jPo = 1 – F0/FM;
• êâàíòîâ äîáèâ íà åëåêòðîííèÿ òðàíñïîðò â
àêöåïòîðíàòà ñòðàíà íà ÔÑ II îò QA
– êúì PQ:
jEo = 1 – FJ/FM;
• êâàíòîâ äîáèâ íà åëåêòðîííèÿ òðàíñïîðò îò PQ.H2
ïðåç P700 êúì êðàéíèòå àêöåïòîðè íà ÔÑ I:
jRo = 1 – FI/FM.
Êàòî îáù êðèòåðèé çà ôèçèîëîãè÷íîòî
ñúñòîÿíèå íà ÔÑÀ ñå âúâåæäà ò.íàð. èíäåêñ íà
ïðîèçâîäèòåëíîñò (Performance Index, PI) èëè èíäåêñ
íà æèçíåíîñò íà ðàñòåíèåòî. Òîé ñå èç÷èñëÿâà îò
ïîñî÷åíèòå êâàíòîâè äîáèâè â òðèòå ó÷àñòúêà íà ÔÑ
ÅÒÂ è îò îòíîñèòåëíèÿ áðîé íà àêòèâíèòå ðåàêöèîííè
öåíòðîâå íà ÔÑ II. Òîòàëíèÿò èíäåêñ íà ïðîèçâîäèòåëíîñòòà
(PItot,ABS) å ìÿðêà íà ïðîèçâîäèòåëíîñòòà íà
ÔÑÀ îò ðåàêöèîííèÿ öåíòúð íà ÔÑ II ÷àê äî êðàéíèòå
àêöåïòîðè íà ÔÑ I è å ïîêàçàòåë çà æèçíåíîñòòà íà
ðàñòåíèÿòà â ñòðåñîâè óñëîâèÿ íà ñðåäàòà [Tsimilli-
Michael and Strasser, 2008].
Çà äà ìîæå áúðçî è ëåñíî äà ñå ïðèëàãà
èçìåðâàíåòî íà ÈÊ íà ÁÔ çà èçó÷àâàíå íà ÔÑÀ, â
ëàáîðàòîðèÿòà íà Strasser [B.Strasser and R.Strasser,
1995] å ðàçðàáîòåí JIP òåñò, íàðå÷åí òàêà ïî èìåòî íà
ñòúïêèòå â ÈÊ. Ñ ïîìîùòà íà JIP òåñòà îò èíäóêöèîííàòà
êðèâà íà ôëóîðåñöåíöèÿòà ñå èçâëè÷à èíôîðìàöèÿ çà
ïîâåäåíèåòî (ñòðóêòóðà, êîíôîðìàöèÿ è ôóíêöèÿ) íà
ÔÑÀ âúâ âñÿêî ôèçèîëîãè÷íî ñúñòîÿíèå.
Ñòàòèñòè÷åñêà îáðàáîòêà
Èíäóêöèîííèòå êðèâè íà ÇÔ ïðè ïøåíèöà è
öàðåâèöà ñà çàïèñâàíè â ïî 6 ïîâòîðåíèÿ çà âñåêè
âàðèàíò. Ïàðàìåòðèòå íà JIP òåñòà ñà èç÷èñëÿâàíè îò
îñðåäíåíèòå êðèâè, çàòîâà íà ïðåäñòàâåíèòå ôèãóðè
åêñïåðèìåíòàëíèòå ñòîéíîñòè ñà äàäåíè áåç
îòêëîíåíèÿ.
Ïàðàìåòðèòå íà JIPòåñòà çà ÇÔ ïðè ãðàõ ñà
îñðåäíåíè ñòîéíîñòè îò ÷åòèðè ïîâòîðåíèÿ íà 14-
äíåâíîòî îáëú÷âàíå â êàìåðàòà (îáùî ïî 20 ðàñòåíèÿ
â ãðóïà).
Çà îöåíêà íà ñòàòèñòè÷åñêàòà äîñòîâåðíîñò íà
ðàçëèêèòå å èçïîëçâàí t-êðèòåðèé íà Ñòþäúíò-Ôèøåð.
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
Ôèíèòå ïðîìåíè â ñúñòîÿíèåòî íà ÔÑÀ íà
ðàñòåíèÿòà ìîæå äà ñå ïðîñëåäÿò ÷ðåç çàïèñ íà
ïðîìåíèòå â õëîðîôèëíàòà ôëóîðåñöåíöèÿ ïðè
ïðåõîäà îò òúìíèííî àäàïòèðàíî êúì ñâåòëèííî
àäàïòèðàíî ñúñòîÿíèå. Ïðè îñâåòÿâàíå íà òúìíèííî
àäàïòèðàí ôîòîñèíòåçèðàù îáåêò ñ ôîòîñèíòåòè÷íî
àêòèâíà ñâåòëèíà â òå÷åíèå íà åäíà ñåêóíäà
èíòåíçèòåòúò íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ
íàðàñòâà îò ìèíèìàëíàòà íà÷àëíà ñòîéíîñò F0 äî
ìàêñèìàëíàòà FP, ïðåìèíàâàéêè ïðåç ìåæäèííè ôàçè
ñúñ ñòîéíîñòè FJ è FI. Òèïè÷íà ïîëèôàçíà O-J-I-P êðèâà
íà íàðàñòâàíå íà ÁÔ å ïðåäñòàâåíà íà ôèã. 1 íà
ïîëóëîãàðèòìè÷íà âðåìåâà ñêàëà îò 50 ìs äî 30 s.
Õàðàêòåðèñòè÷íèòå ñòîéíîñòè íà ôëóîðåñöåíöèÿòà,
îòáåëÿçàíè ñ áóêâèòå J, I è P, ñå èçïîëçâàò â JIP òåñòà
çà ïðåñìÿòàíå íà ñòðóêòóðíè è ôóíêöèîíàëíè
ïàðàìåòðè [Tsimilli-Michael, R.Strasser, 2008].
Èçïîëçâàíèòå ôëóîðåñöåíòíè ñòîéíîñòè ñà F0 (50 μs),
FJ (2 ms) è FI (30 ms); ìàêñèìàëíèÿò èíòåíçèòåò FP = FM
(â ìîìåíò tFmax ~ 0,5-1 s).
Àíàëèçúò íà ïðîìåíèòå â ÈÊ íà ÁÔ ïîêàçâà, ÷å
1-÷àñîâîòî îáëú÷âàíå ñëàáî âëèÿå âúðõó êâàíòîâèÿ
äîáèâ íà ïúðâè÷íàòà ôîòîõèìè÷íà ðåàêöèÿ (êîåòî
ïîêàçâà, ÷å ñòðóêòóðàòà íà ðåàêöèîííèÿ öåíòúð íà ÔÑ
II å ñèëíî êîíñåðâàòèâíà è óñòîé÷èâà êúì ñëàáè
ñòðåñîâè âúçäåéñòâèÿ), à çàñÿãà ïðåäèìíî ðåàêöèèòå
íà åëåêòðîííèÿ ïðåíîñ ìåæäó äâåòå ôîòîñèñòåìè
(ìàêñèìóìèòå â äèàïàçîíà ìåæäó 2 è 30 ms íà ôèã. 1).
Îò âñè÷êè èçñëåäâàíè ïàðàìåòðè (ôèã. 2) íàé-
÷óâñòâèòåëíî ðåàãèðà èíäåêñúò íà ïðîèçâîäèòåëíîñò
PI, ïðè êîéòî ïðîìåíèòå äîñòèãàò 50%. Õàðàêòåðíî å,
÷å åäíî÷àñîâîòî îáëú÷âàíå âîäè äî ïîíèæàâàíå íà
êâàíòîâèÿ äîáèâ íà èçñëåäâàíèòå ðåàêöèè âúâ ÔÑÀ.
Äâó÷àñîâîòî îáëú÷âàíå íà öàðåâè÷íèòå
ðàñòåíèÿ ïðåäèçâèêâà êîðåííî ðàçëè÷íà ðåàêöèÿ íà
ÔÑÀ (ôèã. 3). Âåäíàãà ñëåä îáëú÷âàíåòî ñå íàáëþäàâà
èçâåñòíî ïîâèøàâàíå íà êâàíòîâèòå äîáèâè íà
ðåàêöèèòå âúâ ÔÑ II – êàêòî íà ïúðâè÷íàòà ôîòîõèìè÷íà
ðåàêöèÿ (ö(P0)), òàêà è íà åëåêòðîííèÿ òðàíñïîðò (ö(Å0)).
Ñúùåâðåìåííî åôåêòèâíîñòòà íà çàäâèæâàíèÿ îò ÔÑ I
åëåêòðîíåí òðàíñïîðò íàìàëÿâà, êîåòî êîìïåíñèðà
ïîâèøàâàíåòî íà åôåêòèâíîñòòà íà äðóãèòå ðåàêöèè è
PI ïðè òåçè îáåêòè îñòàâà ïî÷òè íåïðîìåíåí. Òîâà
ïîêàçâà, ÷å ïðè ïî-ïðîäúëæèòåëíîòî îáëú÷âàíå â
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
105
Ôèã. 1. Èíäóêöèîííè êðèâè íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ: âëèÿíèå íà 1 h îáëú÷âàíå ñ 900 MHz ÅÌÏ âúðõó
ôîòîñèíòåòè÷íèÿ àïàðàò íà 10-äíåâíè öàðåâè÷íè ðàñòåíèÿ
Ñ ÷åðíè òî÷êè è íåïðåêúñíàòà ëèíèÿ å ïðåäñòàâåíà èíäóêöèîííàòà êðèâà â êîíòðîëíè ëèñòà îò 10-äíåâíè ðàñòåíèÿ
öàðåâèöà. Ñ áóêâèòå â êðúã÷åòà ñà îáîçíà÷åíè õàðàêòåðèñòè÷íèòå òî÷êè íà O-J-I-P ïðåõîäà, à ñ áóêâàòà F ñúñ
ñúîòâåòíèÿ èíäåêñ – ñòîéíîñòèòå íà õëîðîôèëíàòà ôëóîðåñöåíöèÿ â òåçè òî÷êè. Ñ ïðàçíè ñèìâîëè è ïóíêòèðàíè
ëèíèè ñà ïðåäñòàâåíè ðàçëèêèòå â ñòîéíîñòèòå íà ôëóîðåñöåíöèÿòà â òðåòèðàíèòå ñ ÅÌÏ è êîíòðîëíèòå ðàñòåíèÿ.
Ñ öèôðèòå â ëåãåíäàòà ñà ïîêàçàíè ñðîêîâåòå (â ÷àñîâå) íà èíêóáàöèÿ íà ðàñòåíèåòî ñëåä òðåòèðàíåòî.
Ôëóîðåñöåíöèÿòà å èçìåðåíà íà ëèñòà îò öÿëî ðàñòåíèå ñëåä 5 min òúìíèííà àäàïòàöèÿ íà ëèñòà è èíòåíçèòåò íà
âúçáóæäàùàòà ñâåòëèíà 3000 μmol.m-2.s-1
Fig.1. Induction curves of prompt chlorophyll fluorescence: influence of 1 h exposure to 900 MHz EMF on
photosynthetic apparatus of ten-days maize plants
ðàñòåíèåòî íàñòúïâàò ïðîöåñè, êîìïåíñèðàùè
ïðåäèçâèêàíèòå îò ñòðåñà ïðîìåíè è âúçñòàíîâÿâàíå
íà ôîòîñèíòåòè÷íàòà åôåêòèâíîñò.
Èíòåðåñíî å äà ñå ñðàâíè õàðàêòåðúò íà
ñòðåñîâàòà ðåàêöèÿ â äðóãî ðàñòåíèå, ðàçëè÷àâàùî ñå
ïî ïðèíöèïíàòà ñõåìà íà òúìíèííèòå ôîòîñèíòåòè÷íè
ïðîöåñè, ïðîòè÷àùè ïî öèêúëà íà Êàëâèí-Áåíñúí –
ïøåíèöà (Ñ3 òèï ôîòîñèíòåçà). Çà ðàçëèêà îò
öàðåâèöàòà ÔÑÀ â ëèñòàòà íà ïøåíèöàòà ðåàãèðà íà
äâó÷àñîâîòî îáëú÷âàíå ñ åäíîïîñî÷íî ïîòèñêàíå íà ÔÑ
åëåêòðîíåí òðàíñïîðò ñëåä 2-ðèÿ ÷àñ ñëåä ïðåêðàòÿâàíå
íà âúçäåéñòâèåòî (ôèã. 4). Ïîñëåäâàùîòî îòãëåæäàíå
íà ðàñòåíèÿòà â îòñúñòâèå íà ÅÌÏ âîäè äî ïîñòåïåííî
ìîíîòîííî íàìàëÿâàíå íà åôåêòà è çàëè÷àâàíå íà
ðàçëèêèòå ìåæäó îáëú÷åíèòå è êîíòðîëíèòå ðàñòåíèÿ.
Ñðàâíåíèåòî íà ïîâåäåíèåòî íà äâàòà âèäà
ðàñòåíèÿ ïîêàçâà, ÷å íåçàâèñèìî îò òèïà íà
ôîòîñèíòåçàòà ÔÑÀ íà ðàñòåíèÿòà å ÷óâñòâèòåëåí êúì
1-2-÷àñîâà åêñïîçèöèÿ â ÅÌÏ ñ ÷åñòîòà 900 MHz,
ãåíåðèðàíî îò ìîáèëåí òåëåôîíåí àïàðàò. Â
ïðîäúëæåíèå íà 1-2 äíè ñëåä îáëú÷âàíåòî ðàñòåíèÿòà
âúçñòàíîâÿâàò ÔÑ ïîêàçàòåëè, õàðàêòåðíè çà
êîíòðîëíèòå ðàñòåíèÿ. Öàðåâèöàòà, ïðèòåæàâàùà
âèñîêà ôîòîñèíòåòè÷íà àêòèâíîñò, ðåàãèðà ïî-
÷óâñòâèòåëíî. Ïðè ïî-ïðîäúëæèòåëåí ñòðåñ âúâ ÔÑÀ
íàñòúïâàò ïðèñïîñîáèòåëíè ðåàêöèè, íàìàëÿâàùè
ñèëàòà íà ñòðåñîâèÿ îòãîâîð.
Îáëú÷âàíåòî íà ãðàõîâè ðàñòåíèÿ â
ïðîäúëæåíèå íà 14 äíè ïî 1 ÷àñ íà äåí ïðåç òúìíèÿ
ïåðèîä ñ íåïðåêúñíàòî ÅÌÏ, ñèìóëèðàùî èçëú÷âàíåòî
îò áàçîâà ñòàíöèÿ â ÷àñ ïèê, íå ïðåäèçâèêâà
ñòàòèñòè÷åñêè äîñòîâåðíè èçìåíåíèÿ â ïàðàìåòðèòå íà
áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ (ôèã. 5). Ãðàõúò å
÷óâñòâèòåëíî êúì ïðîìåíè â îêîëíàòà ñðåäà ðàñòåíèå.
Ëèïñàòà íà ðåàêöèÿ ïðè òåçè óñëîâèÿ íà îáëú÷âàíå
ìîæå äà ñå äúëæè íà íÿêîëêî ïðè÷èíè. Îáëú÷âàíåòî å
ïðîäúëæèòåëíî (14 äíè), çàïî÷âà âåäíàãà ñëåä
çàñàæäàíåòî, îùå ïðåäè ðàçëèñòâàíåòî íà ðàñòåíèÿòà,
è òå èìàò âðåìå äà ñå àäàïòèðàò êúì ïðèëàãàíîòî ÅÌÏ.
Âúçäåéñòâèåòî å ïî âðåìå íà òúìíàòà ôàçà, êîãàòî
ΔPF
JIP time, ms
10-2 10-1 100 101 102 103 104 105
PFT(t) - PFC(t), rel. u.
-2000
-1000
0
1000
2000
3000
Chlorophyll fluorescence intensity, rel. u.
4000
6000
8000
10000
12000
14000
16000
18000
20000
0 h
1 h
2 h
Control
O
J
P
F
O
F
J
F
I
F
P
I
106
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Time after irradiation, h
0 1 10
ϕ(P0)
0.69
0.70
0.71
0.72
0.73
Control
1 h 900 MHz
Time after irradiation, h
0 1 10
ϕ(E0)
0.38
0.40
0.42
0.44
0.46
0.48
0.50
Time after irradiation, h
0 1 10
ϕ(R0)
0.16
0.18
0.20
0.22
0.24
Time after irradiation, h
0 1 10
PItotal
0.1
0.2
0.3
0.4
A B
C D
Ôèã. 2. Ïðîìåíè â õàðàêòåðèñòèêèòå íà ôîòîñèíòåòè÷íèÿ àïàðàò, îò÷åòåíè ïî ïàðàìåòðèòå íà JIP òåñòà, â ëèñòà
îò 10-äíåâíè öàðåâè÷íè ðàñòåíèÿ ñëåä åäíî÷àñîâî îáëú÷âàíå ñ 900 MHz ÅÌÏ
Fig.2. Changes in the characteristics of photosynthetic apparatus, reported by the parameters of the JIP-test, in leaves of ten-days
maize plants after 1 hour exposure to 900 MHz ÅÌF
Time after irradiation, h
0 1 10
ϕ(P0)
0.705
0.710
0.715
0.720
0.725
0.730
0.735
Control
2 h 900 MHz
Time after irradiation, h
0 1 10
ϕ(E0)
0.40
0.42
0.44
0.46
Time after irradiation, h
0 1 10
ϕ(R0)
0.16
0.17
0.18
0.19
0.20
0.21
Time after irradiation, h
0 1 10
PItotal
0.18
0.20
0.22
0.24
0.26
0.28
0.30
A B
C D
Ôèã. 3. Ïðîìåíè â õàðàêòåðèñòèêèòå íà ôîòîñèíòåòè÷íèÿ àïàðàò, îò÷åòåíè ïî ïàðàìåòðèòå íà JIP òåñòà, â ëèñòà
îò 10-äíåâíè öàðåâè÷íè ðàñòåíèÿ ñëåä 2-÷àñîâî îáëú÷âàíå ñ 900 MHz ÅÌÏ
Fig.3. Changes in the characteristics of photosynthetic apparatus, reported by the parameters of the
JIP-test, in leaves of ten-days maize plants after 2 hours exposure to 900 MHz ÅÌF
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
107
Time after irradiation, h
0 1 10
ϕ(P0)
0.69
0.70
0.71
0.72
0.73
0.74
Control
2 h 900 MHz
Time after irradiation, h
0 1 10
ϕ(E0)
0.40
0.42
0.44
0.46
0.48
0.50
Time after irradiation, h
0 1 10
ϕ(R0)
0.14
0.16
0.18
0.20
Time after irradiation, h
0 1 10
PItotal
0.05
0.10
0.15
0.20
0.25
0.30
A B
C D
Ôèã. 4. Ïðîìåíè â õàðàêòåðèñòèêèòå íà ÔÑÀ, îò÷åòåíè ïî ïàðàìåòðèòå íà JIP òåñòà, â ëèñòà îò 7-äíåâíè ïøåíè÷íè
ðàñòåíèÿ (Triticum aestivum) ñëåä 2-÷àñîâî îáëú÷âàíå ñ 900 MHz ÅÌÏ
Fig. 4. Changes in the characteristics of photosynthetic apparatus, reported by the parameters of the
JIP-test, in leaves of seven-days wheat plants (Triticum aestivum) after 2 hours exposure to 900 MHz ÅÌF
Ôèã. 5. Ïàðàìåòðè íà JIP òåñòà, èçìåðâàíè îò 10-òèÿ äî 14-òèÿ äåí ïðè îáëú÷âàíå íà ãðàõ (Pisum sativum) â
ïðîäúëæåíèå íà 14 äíè ïî 1 ÷àñ íà äåí ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà 42,6 V/m íà 947,5 MHz íåïðåêúñíàòî ÅÌÏ
Fig. 5. Parameters of the JIP-test, measured from the 10th to 14th day in the exposure of peas (Pisum
sativum) for 14 days, 1 hour a day with a homogeneous electric component 42,6 V/m on 947,5 MHz EMF constant
108
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
ðàñòåíèÿòà íå ñà ôîòîñèíòåòè÷íî ôóíêöèîíàëíî
àêòèâíè è çàòîâà íå ñå ðåãèñòðèðà ðåàêöèÿ íà ÔÑÀ.
Èçëú÷âàíåòî îò ìîáèëíèÿ òåëåôîí å èìïóëñíî. ÅÌÏ,
ñèìóëèðàùî èçëú÷âàíå îò áàçîâà ñòàíöèÿ, å
íåïðåêúñíàòî è ðàñòåíèÿòà ñà èçëîæåíè ñàìî íà
åëåêòðè÷íàòà êîìïîíåíòà. Èìïóëñíèòå ÅÌÏ ñà
áèîëîãè÷íî ïî-åôåêòèâíè îò ïîñòîÿííèòå.
ÇÀÊËÞ×ÅÍÈÅ
Ïîëó÷åíèòå ðåçóëòàòè ïîêàçâàò, ÷å ðàñòåíèÿòà
ðåàãèðàò íà íèñêîèíòåíçèâíîòî èìïóëñíî ÅÌÏ,
èçëú÷âàíî îò ìîáèëíè òåëåôîíè. Íàáëþäàâàíèòå
åôåêòè çàâèñÿò îò âèäà íà ðàñòåíèåòî, îò âðåìåòî íà
âúçäåéñòâèå ñ 900 MHz ÅÌÏ è ñå çàïàçâàò èçâåñòíî
âðåìå ñëåä ïðåêðàòÿâàíå íà âúçäåéñòâèåòî. Îò äâàòà
âèäà êóëòóðíè ðàñòåíèÿ ñ ðàçëè÷åí ìåõàíèçúì íà ÑÎ2
ôèêñàöèÿ öàðåâèöàòà (Zea mays) (Ñ4) ïîêàçà ïî-ãîëÿìà
÷óâñòâèòåëíîñò îò ïøåíèöàòà (Triticum aestivum) (Ñ3)
êúì 900 MHz ÅÌÏ ïðè èçñëåäâàíèòå óñëîâèÿ íà
åêñïîíèðàíå.
Âúçäåéñòâèåòî ïðåç òúìíèÿ ïåðèîä ñ
åëåêòðè÷íàòà êîìïîíåíòà íà íåïðåêúñíàòî GSM900
ÅÌÏ, ñèìóëèðàùî èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ÷àñ
ïèê, íå ïðåäèçâèêâà ñòðåñ â ãðàõîâèòå ðàñòåíèÿ, îöåíåí
ïî ïàðàìåòðèòå íà áúðçàòà õëîðîôèëíà ôëóîðåñöåíöèÿ.
ËÈÒÅÐÀÒÓÐÀ
Äèìèòðîâà, Ì., Ì. Êóçìàíîâà, Ä. Äðàãîëîâà, 2009.
Èçìåíåíèÿ â êîíöåíòðàöèÿòà íà ïèãìåíòè â ëèñòàòà
íà ïøåíèöà (Triticum aestivum) ñëåä îáëú÷âàíå ñ 900
MHz åëåêòðîìàãíèòíî ïîëå. – Â: Þáèëåéíà íàó÷íà
êîíôåðåíöèÿ „Áúëãàðèÿ è áúëãàðèòå â Åâðîïà”,
Âåëèêî Òúðíîâî, 17 îêòîìâðè 2009 ã.
Beaubois, E., S.Girard, S.Lallechere, E.Davies, F.Paladian,
P.Bonnet, G.Ledoigt, A.Vian, 2007. Intercellular
communication in plants: evidence for two rapidly
transmitted systemic signals generated in response to
electromagnetic field stimulation in tomato. – Plant Cell
Environ; 30 (7) 834–844.
Kouzmanova, M., M. Dimritrova, D. Dragolova, G.
Atanassova, N. Atanassov, 2009. Effects of GSM900
electromagnetic field on pigment levels in leaves of
Plectranthus sp. – Â: Ñáîðíèê äîêëàäè íà „Ñåìèíàð
ïî åêîëîãèÿ”, àïðèë, 2009, Ñîôèÿ, 143-150.
Roux, D., A. Vian, S. Girard, P. Bonnet, F. Paladian, E.
Davies, G. Ledoigt, 2008. High frequency (900 MHz)
low amplitude (5 V m”1) electromagnetic field: a genuine
environmental stimulus that affects transcription,
translation, calcium and energy charge in tomato. –
Planta, 227 (4) 883–891.
Sandu, D.D., I.C. Goiceanu, A. Ispas, I. Creanga, S.
Miclaus, D.E. Creanga, 2005. A preliminary study on
ultra high frequency electromagnetic fields effect on
black locust chlorophylls. – Acta Biol Hung; 56 (1-2)
109–117.
Selga, T., M. Selga, 1996. Response of Pinus sylvestris L.
needles to electromagnetic fields. Cytological and
ultrastructural aspects. – The Science of the Total
Environment, 180 (1) 65–73.
Schmutz, P., J. Siegenthaler, C. Staeger, D.Tarjan, J.B.
Bucher, 1996. Long-term exposure of young spruce and
beech trees to 2450-MHz microwave radiation. – The
Science of the Total Environment, 180 (1): 43–48.
Strasser, B.J., R.J. Strasser, 1995. Measuring fast
fluorescence transients to address environmental
questions: the JIP test. – In: P. Mathis (Ed.),
Photosynthesis: from Light to Biosphere: Proceedings
of the Xth International Photosynthesis Congress,
Montpellier-France, 1995, Kluwer Academic Publishers,
The Netherlands, vol. V, pp. 977-980.
Tafforeau, M., M.C. Verdus, V. Norris, G.J. White, M. Cole,
M. Demarty, M. Thellier, C. Ripoll, 2004. Plant sensitivity
to low intensity 105 GHz electromagnetic radiation. –
Bioelectromagnetics; 25 (6) 403–407.
Tkalec, M., Malariæ K., Pevalek-Kozlina B., 2005. Influence
of 400, 900, and 1900 MHz electromagnetic fields on
Lemna minor growth and peroxidase activity. –
Bioelectromagnetics, 26 (3) 185-193.
Tkalec, M, K Malariæ, B Pevalek-Kozlina, 2007. Exposure
to radiofrequency radiation induces oxidative stress in
duckweed Lemna minor L. – Science of the Total
Environment, 388, 78–89.
Tsimilli-Michael, M., R.J. Strasser, 2008. In vivo assessment
of plants’ vitality: applications in detecting and evaluating
the impact of Mycorrhization on host plants. – In: A.
Varma (Ed.), Mycorrhiza: State of the Art, Genetics and
Molecular Biology, Eco-Function, Biotechnology, Eco-
Physiology, Structure and Systematics (3-rd edition),
Springer, Dordrecht, The Netherlands, pp. 679-703.
Vian, A., D. Roux, S. Girard, P. Bonnet, F. Paladian, E.
Davies, G. Ledoigt, 2006. Microwave Irradiation Affects
Gene Expression in Plants. – Plant Sign Behav, 1 (2)
67-70.
Òîâà èçñëåäâàíå å ôèíàíñèðàíî îò Ñîôèéñêèÿ
óíèâåðñèòåò „Ñâ. Êë. Îõðèäñêè”, äîãîâîð çà
íàó÷íè èçñëåäâàíèÿ ¹ 007/30.03.2010 ã.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Çëàòêî Çëàòåâ
E-mail: zl_zlatev@abv.bg
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
109
ÂËÈßÍÈÅ ÍÀ ÏÐÎÄÚËÆÈÒÅËÍÎ ÎÁËÚ×ÂÀÍÅ Ñ GSM900 ÅËÅÊÒÐÎÌÀÃÍÈÒÍÈ ÏÎËÅÒÀ ÂÚÐÕÓ ÅÍÇÈÌÍÀÒÀ
ÀÊÒÈÂÍÎÑÒ Â ËÈÑÒÀ ÎÒ ÃÐÀÕ (PISUM SATIVUM L.)
EFFECTS OF PROLONGED EXPOSURE TO GSM900 ELECTROMAGNETIC FIELDS
ON ENZYME ACTIVITY IN LEAVES OF PEAS (PISUM SATIVUM L.)
Ìàðãàðèòà Êóçìàíîâà1*, Ìèëåíà Äèìèòðîâà2, Äàíèåëà Äðàãîëîâà2,
Ãàáðèåëà Àòàíàñîâà3, Íèêîëàé Àòàíàñîâ4
Margarita Kouzmanova1*, Milena Dimitrova2, Daniela Dragolova2,
Gabriela Atanassova3, Nikolai Atanassov4
1 Êàòåäðà „Áèîôèçèêà è ðàäèîáèîëîãèÿ”
2Êàòåäðà „Ôèçèîëîãèÿ íà ðàñòåíèÿòà”
Áèîëîãè÷åñêè ôàêóëòåò, Ñîôèéñêè óíèâåðñèòåò „Ñâ. Êë. Îõðèäñêè”
3Êàòåäðà „Òåëåêîìóíèêàöèîííè òåõíîëîãèè”
4Êàòåäðà „Áåçæè÷íè êîìóíèêàöèè è ðàçïðúñêâàíå”
ÂÄÓ „Êîëåæ ïî òåëåêîìóíèêàöèè è ïîùè”
1Department of Biophysics and Radiobiology,
2Department of Plant Physiology
*St. Kliment Ohridski University of Sofia, Faculty of Biology, Sofia, Bulgaria
3Department of Telecommunication Technologies
4Department of Wireless Communications and Broadcasting
Higher College of Telecommunications and Posts
*E-mail: kouzmanova@biofac.uni-sofia.bg
Ðåçþìå
Èçñëåäâàíèÿòà íà âëèÿíèåòî íà ðàäèî÷åñòîòíè åëåêòðîìàãíèòíè ïîëåòà (Ð× ÅÌÏ) âúðõó ðàñòåíèÿ ñà ìàëêî,
íî ðåçóëòàòèòå ïîêàçâàò, ÷å ðàñòåíèÿòà ðåàãèðàò íà ÅÌÏ, èçïîëçâàíè â ìîáèëíèòå êîìóíèêàöèè. Öåëòà íà íàñòîÿùàòà
ðàáîòà å äà ñå èçñëåäâà âëèÿíèåòî íà ïðîäúëæèòåëíî îáëú÷âàíå ñ ÅÌÏ, ñèìóëèðàùî èçëú÷âàíå îò áàçîâà ñòàíöèÿ
â ðåæèì íà ìàêñèìàëíî íàòîâàðâàíå, âúðõó åíçèìíàòà àêòèâíîñò â ëèñòà îò ãðàõîâè ðàñòåíèÿ (Pisum sativum L.),
ñîðò ÐÀÍ–1. Ðàñòåíèÿòà ñà ðàçäåëåíè íà 3 ãðóïè ïî 5 ðàñòåíèÿ: êîíòðîëà, ëúæëèâî åêñïîíèðàíè è åêñïîíèðàíè.
Åêñïîíèðàíèòå ðàñòåíèÿ ñà îáëú÷âàíè â ïðîäúëæåíèå íà 14 äíè ïî 1 ÷àñ íà äåí ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà
42,6 V/m íà 947,5 MHz íåïðåêúñíàòî ÅÌÏ, êîåòî ñèìóëèðà èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ÷àñ ïèê. Îïðåäåëÿíà å
àêòèâíîñòòà íà äèõàòåëíè åíçèìè (èçîöèòðàò äåõèäðîãåíàçà, ãëþêîçî-6-ôîñôàò äåõèäðîãåíàçà è ìàëèê åíçèì) è
ïåðîêñèäàçè (êàòàëàçà, ãâàÿêîë ïåðîêñèäàçà è àñêîðáàò ïåðîêñèäàçà).
Ïîëó÷åíèòå ðåçóëòàòè ïîêàçâàò, ÷å ïðîäúëæèòåëíîòî îáëú÷âàíå íà ãðàõîâè ðàñòåíèÿ ïðåç òúìíèÿ ïåðèîä
ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà íåïðåêúñíàòî ÅÌÏ, ñèìóëèðàùî èçëú÷âàíåòî îò áàçîâà ñòàíöèÿ â ÷àñ ïèê, íå
ïðåäèçâèêâà èçìåíåíèÿ â àêòèâíîñòòà íà äèõàòåëíè è àíòèîêñèäàíòíè åíçèìè â ëèñòàòà.
Abstract
Studies on the effects of radio frequency electromagnetic fields (RF EMF) on plants are few in number but the results
suggest that plants respond to EMF used in mobile communications. The purpose of this work is to investigate the effects of
prolonged base station EMF exposure on the enzyme activity in leaves of pea plants Pisum sativum L., variety RAN-1. Plants
were divided into 3 groups of 5 plants: control, exposed and sham exposed. Exposed plants were irradiated for 14 days, 1 hour
daily with a homogeneous electric component 42,6 V/m of 947,5 MHz continuous EMF simulating the emission of a BS during
a rush hour. The activity of several respiratory enzymes (isocitrat dehydrogenase, glucose-6-phosphate dehydrogenase and
malic enzyme) and peroxidases (catalase, ascorbate peroxidase and guaiacol peroxidase) was measured.
The obtained results showed that prolonged exposure of pea plants during the dark period to homogeneous
continuous electrical component of EMF radiation, simulating a base station during a rush hour, did not cause changes in
the activity of respiratory and antioxidant enzymes in the leaves.
110
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Êëþ÷îâè äóìè: 900 MHz åëåêòðîìàãíèòíî ïîëå, ìîáèëíè òåëåôîíè, êóëòóðíè ðàñòåíèÿ, åíçèìíà àêòèâíîñò.
Key words: 900 MHz electromagnetic fields, mobile phones, crop plants, enzyme activity.
ÂÚÂÅÄÅÍÈÅ
Øèðîêîòî ðàçïðîñòðàíåíèå íà êëåòú÷íèòå
òåëåôîíè ïîðàæäà òðåâîãè â îáùåñòâîòî çà
ïîòåíöèàëíîòî äåéñòâèå íà ñúçäàâàíîòî îò òÿõ
åëåêòðîìàãíèòíî ïîëå (ÅÌÏ) âúðõó çäðàâåòî íà ÷îâåêà.
Äðóãà îáëàñò íà áåçïîêîéñòâî å ðàäèàöèÿòà, èçëú÷âàíà
îò ôèêñèðàíàòà èíôðàñòðóêòóðà, èçïîëçâàíà â ìîáèëíèòå
êîìóíèêàöèè – áàçîâè ñòàíöèè è òåõíèòå àíòåíè, êîèòî
îñúùåñòâÿâàò âðúçêàòà îò è êúì ìîáèëíèòå ñòàíöèè
(òåëåôîíè). Çà ðàçëèêà îò ìîáèëíèÿ òåëåôîí òå èçëú÷âàò
íåïðåêúñíàòî è ñà ïî-ìîùíè. Íà èçëú÷âàíåòî å èçëîæåíî
íå ñàìî íàñåëåíèåòî, à è ôëîðàòà, è ôàóíàòà â ðàéîíèòå
îêîëî áàçîâèòå ñòàíöèè, êîèòî ñòàâàò âñå ïî-áëèçî åäíà
äî äðóãà. GSM900 å öèôðîâ ñòàíäàðò çà ìîáèëíà âðúçêà
â ÷åñòîòíèÿ äèàïàçîí îò 890 äî 960 MHz. Âðúçêàòà å íà
ðàçñòîÿíèå íå ïîâå÷å îò 35 km îò íàé-áëèçêàòà áàçîâà
ñòàíöèÿ (ÁÑ). Çàòîâà çà ïîêðèâàíå íà îïðåäåëåíà ïëîù
å íåîáõîäèì ïî-ãîëÿì áðîé ïðåäàâàòåëè. Èçêëþ÷èòåëíî
áúðçîòî è øèðîêî ðàçïðîñòðàíåíèå íà ðàçëè÷íè
êîìóíèêàöèîííè ñèñòåìè ïðåç ïîñëåäíèòå ãîäèíè âîäè
äî íåïðåêúñíàòî èçãðàæäàíå íà íîâè è íîâè áàçîâè
ñòàíöèè è óâåëè÷àâàíå íà íèâàòà íà ðàäèî÷åñòîòíèÿ (Ð×)
åëåêòðîìàãíèòåí ôîí íå ñàìî â íàñåëåíèòå ìåñòà, à è â
îòäàëå÷åíèòå îò òÿõ ðàéîíè.
Ïî-ãîëÿìàòà ÷àñò îò íàó÷íèòå èçñëåäâàíèÿ íà
åôåêòèòå íà Ð× åëåêòðîìàãíèòíè ïîëåòà (ÅÌÏ) ñà
ìîòèâèðàíè îò òðåâîãèòå â îáùåñòâîòî îòíîñíî
ïîñëåäèöèòå îò îáëú÷âàíåòî îò ìîáèëíèòå òåëåôîíè
çà çäðàâåòî íà õîðàòà è ñà ïðîâåäåíè âúðõó æèâîòíè.
Èçñëåäâàíèÿòà íà âëèÿíèåòî íà Ð× ÅÌÏ âúðõó ðàñòåíèÿ
ñà ìàëêî, íî ðåçóëòàòèòå ïîêàçâàò, ÷å ðàñòåíèÿòà ñúùî
ðåàãèðàò íà ÅÌÏ, èçëú÷âàíè îò ìîáèëíèòå òåëåôîíè.
Îöåíêàòà íà âúçäåéñòâèåòî íà Ð× ÅÌÏ âúðõó
ðàñòåíèÿòà èìà ãîëÿìî çíà÷åíèå ïîðàäè èçêëþ÷èòåëíàòà
èì âàæíîñò êàòî îñíîâåí ïúðâè÷åí ïðîäóöåíò íà
îðãàíè÷íè âåùåñòâà è êèñëîðîä.
Magone [1996] èçïîëçâà ÷óâñòâèòåëíîòî âîäíî
ðàñòåíèå Spirodela polyrhiza (L.) Schleiden çà îöåíêà íà
âëèÿíèåòî íà ðàäèîëîêàöèîííà ñòàíöèÿ â Ëàòâèÿ (156–
162 MHz, 5 äíè åêñïîíèðàíå) è óñòàíîâÿâà óñêîðåíà
âåãåòàòèâíà ðåïðîäóêöèÿ ïðåç ïúðâèòå 20 äíè ñëåä
âúçäåéñòâèåòî. Âåãåòàòèâíîòî ðàçâèòèå å çàáàâåíî ïðè
ðàñòåíèÿ â íà÷àëíèòå åòàïè íà ðàçâèòèåòî èì. Íà 55-
òèÿ äåí çàïî÷âàò äà ñå ïîÿâÿâàò ðàçëè÷íè àíîìàëèè â
ìîðôîëîãèÿòà è ðàçâèòèåòî. Ðàñòåíèÿòà, ðàçâèëè ñå
íàïúëíî êàòî äúùåðíî ïîêîëåíèå ïî âðåìå íà ÅÌ
âúçäåéñòâèå, èìàò ïî-êúñà ïðîäúëæèòåëíîñò íà æèâîòà
è ïî-ìàëîáðîéíî ïîêîëåíèå. Tafforeau è ñúàâò. [2004]
èçñëåäâàò âëèÿíèåòî íà 100 GHz ÅÌÏ âúðõó ëåí (Linum
usitatissimum L. var Ariane). Åäíîêðàòíî 2 h åêñïîíèðàíå
ñúñ 105 GHz ïðè íåòåðìè÷íè íèâà èíäóöèðà
îáðàçóâàíåòî íà ìåðèñòåìà ñ êèíåòèêà, ñõîäíà íà
ïîëó÷åíàòà ïðè ñëàáè âúçäåéñòâèÿ îò îêîëíàòà ñðåäà
è îáëú÷âàíå ñ GSM òåëåôîíè.
Ïðè èçñëåäâàíå íà âëèÿíèåòî íà 10 min
âúçäåéñòâèå ñ íèñêîèíòåíçèâíî 900 MHz ÅÌÏ âúðõó
äîìàòåíè ðàñòåíèÿ (Lycopersicon esculentum Mill. VFN8)
ñà ïîëó÷åíè äîêàçàòåëñòâà, ÷å òå âúçïðèåìàò è ðåàãèðàò
íà ÅÌÏ êàòî íà óâðåæäàíå (íàðàíÿâàíå). Âèñîêî-
÷åñòîòíîòî ÅÌÏ å ñòèìóë, êîéòî ïîâëèÿâà ãåííàòà
åêñïðåñèÿ, òðàíñêðèïöèÿòà, òðàíñëàöèÿòà, êàêòî è
íèâàòà íà êàëöèé è åíåðãèéíèÿ áàëàíñ íà äîìàòåíèòå
ðàñòåíèÿ [Beaubois, 2007; Roux, 2008; Vian, 2006].
Íÿêîè àâòîðè èçñëåäâàò îêñèäàòèâíèòå
åôåêòè íà èçëú÷âàíåòî îò ìîáèëíè òåëåôîíè âúðõó
ðàñòåíèÿ. Tkalec è ñúàâò. [2005, 2007] èçñëåäâàò
âëèÿíèåòî íà Ð× ÅÌÏ (400 MHz, 900 MHz è 1.9 GHz; 2,
4 è 14 h) âúðõó ðàçâèòèåòî íà âîäíà ëåùà (Lemna minor)
è ïàðàìåòðè íà îêñèäàòèâíèÿ ñòðåñ. Ïîëó÷åíèòå
ðåçóëòàòè ïîêàçâàò, ÷å èçñëåäâàíèòå Ð× ÅÌÏ, îñîáåíî
900 MHz, èíäóöèðàò îêñèäàòèâåí ñòðåñ (óâåëè÷åíî ÏÎË
è ñúäúðæàíèå íà H2O2, ñúïúòñòâàíî îò íàìàëåíà
àêòèâíîñò íà àíòèîê-ñèäàíòíè åíçèìè) è ìîãàò äà
ïîâëèÿÿò ðàçâèòèåòî íà ðàñòåíèÿòà. Îêñèäàòèâíèÿò
ñòðåñ ìîæå ÷àñòè÷íî äà ñå äúëæè íà ïðîìåíåíàòà
àêòèâíîñò íà àíòèîêñèäàíòíè åíçèìè. Íàáëþäàâàíèòå
ðåàêöèè çàâèñÿò îò ÷åñòîòàòà íà ÅÌÏ, èíòåíçèòåòà,
ìîäóëàöèÿòà, êàêòî è îò âðåìåòî íà âúçäåéñòâèå.
Sharma et al. [2009, 2010] ïîêàçâàò, ÷å EMÏ îò
êëåòú÷íè òåëåôîíè (8.55 μW cm-2; 900 MHz; for 1/2, 1,
2, and 4 h) ïîòèñêà ïîêúëâàíåòî (ïðè åêñïîíèðàíå ≥ 2
h) è íàðàñòâàíåòî íà êîðåíà è êúëíà (≤1 h) ïðè Vigna
radiata (ïàïóäà, âèä áîá). ÅÌÏ îò êëåòú÷íè òåëåôîíè
óâåëè÷àâà ñúäúðæàíèåòî íà ÌÄÀ è H2O2, òàêà èíäóöèðà
îêñèäàòèâåí ñòðåñ è óâðåæäàíå íà êëåòêàòà. Â îòãîâîð
íà ÅÌÏ ñå ïîâèøàâà àêòèâíîñòòà íà àíòèîêñèäàíòíè
åíçèìè, êàòî ÑÎÄ, àñêîðáàò ïåðîêñèäàçà, ãâàÿêîë
ïåðîêñèäàçà, êàòàëàçà è ãëóòàòèîí ðåäóêòàçà â êîðåíèòå
íà ïàïóäà. Àâòîðèòå ñ÷èòàò, ÷å ïðåäèçâèêàíèÿò îò
èçëú÷âàíåòî íà êëåòú÷íèòå òåëåôîíè îêñèäàòèâåí
ñòðåñ å ïðè÷èíà çà çàáàâåíîòî ðàçâèòèå íà êîðåíà íà
ïàïóäàòà, íåçàâèñèìî îò àêòèâèðàíåòî íà àíòèîêñèäàíòíèòå
åíçèìè. ÅÌÏ ïîâëèÿâà ðàñòåæà è ðàçâèòèåòî
íà ðàñòåíèÿòà, ïîíèæàâà ñúäúðæàíèåòî íà áåëòúöè è
âúãëåõèäðàòè. Àêòèâíîñòòà íà åíçèìèòå ïðîòåàçà, àëôààìèëàçà,
áåòà-àìèëàçà, ïîëèôåíîë îêñèäàçà è
ïåðîêñèäàçà ñå óâåëè÷àâà â êîðåí÷åòàòà íà îáëú÷åíèòå
ðàñòåíèÿ, êîåòî ïîêàçâà òÿõíàòà ðîëÿ â çàùèòàòà ñðåùó
èíäóöèðàíèÿ îò ÅÌÏ ñòðåñ.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
111
Ðåçóëòàòèòå îò íàøè ïðåäèøíè èçñëåäâàíèÿ
ïîêàçàõà, ÷å åäíîêðàòíî îáëú÷âàíå (1 èëè 2 ÷àñà) íà
äåêîðàòèâíîòî ðàñòåíèå Plectranthus sp. è íà êóëòóðíèòå
ðàñòåíèÿ ïøåíèöà (Triticum aestivum) è öàðåâèöà (Zea
mays) ñ 900 MHz ÅÌÏ, èçëú÷âàíî îò ìîáèëåí òåëåôîí,
ïðîìåíÿ åíçèìíàòà àêòèâíîñò, ñúäúðæàíèåòî íà ïðîëèí,
ìàëîíäèàëäåõèä è âîäîðîäåí ïåðîêñèä â ëèñòàòà, êàòî
íàëè÷èåòî è ïîñîêàòà íà èçìåíåíèÿòà çàâèñÿò îò âèäà
íà ðàñòåíèåòî, îò âðåìåòî íà âúçäåéñòâèå, êàêòî è îò
âðåìåòî, èçìèíàëî ñëåä ïðåêðàòÿâàíå íà âúçäåéñòâèåòî
[Kouzmanova 2009, Dimitrova, 2008].
Âúïðîñúò äàëè Ð× ÅÌÏ îò êëåòú÷íèòå
òåëåôîíè ïðåäèçâèêâàò îêñèäàòèâåí ñòðåñ è ïîâëèÿâàò
àíòèîêñèäàíòíàòà çàùèòà å îñîáåíî èíòåðåñåí.
Öåëòà íà íàñòîÿùàòà ðàáîòà å äà ñå èçñëåäâà
âëèÿíèåòî íà ïðîäúëæèòåëíî (14 äíè, 1 ÷àñ äíåâíî)
îáëú÷âàíå ñ åëåêòðîìàãíèòíî ïîëå, ñèìóëèðàùî
èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ðåæèì íà ìàêñèìàëíî
íàòîâàðâàíå, âúðõó åíçèìíàòà àêòèâíîñò â ëèñòà îò
ãðàõîâè ðàñòåíèÿ (Pisum sativum L.).
ÌÀÒÅÐÈÀËÈ È ÌÅÒÎÄÈ
Îòãëåæäàíå íà ðàñòåíèÿòà
Ãðàõîâèòå ðàñòåíèÿ ñà îòãëåæäàíè â òå÷íà
õðàíèòåëíà ñðåäà (ÊÍÎÏ) âúâ ôèòîñòàòíà êàìåðà ïðè
ñòàéíà òåìïåðàòóðà, îñâåòåíîñò 160 μmol m–2s–1 è
ôîòîïåðèîä ñâåòëî/òúìíî 12/12 h.
Îáëú÷âàíå ñ GSM900 ÅÌÏ
Åäíî îò îñíîâíèòå èçèñêâàíèÿ ïðè ïðîâåæäàíå
íà åêñïåðèìåíòè ñ áèîëîãè÷íè îáåêòè å îáåêòèòå äà
áúäàò èçîëèðàíè îò âëèÿíèåòî íà äðóãè ïîëåòà, êàêòî è
ñòðèêòíî äà ñå êîíòðîëèðàò ïàðàìåòðèòå íà
èçñëåäâàíîòî ïîëå. Çà òàçè öåë áå êîíñòðóèðàíà êàìåðà
çà îáëú÷âàíå, áàçèðàíà íà îáåìåí ðåçîíàòîð. Òÿ
îñèãóðÿâà õîìîãåííîñò íà åëåêòðè÷åñêîòî ïîëå. Çà
îáåêòèòå, ïîñòàâåíè â òàçè êàìåðà, ìîæå ñ äîñòàòú÷íî
äîáðà òî÷íîñò äà ñå îïðåäåëè ïîãúëíàòàòà äîçà.
Ðàçìåðèòå íà êàìåðàòà (128 mm) íàëàãàò îãðàíè÷åíèÿ
â ðàçìåðèòå íà èçñëåäâàíèòå îáåêòè. Îáåêò ñ
ïîäõîäÿùè ðàçìåðè çà îáëú÷âàíå ñ ÅÌÏ â òàçè êàìåðà
å íèñêîðàñëèÿò ñîðò ÐÀÍ–1 íà ãðàõ (Pisum sativum L.).
Ðàñòåíèÿòà ñà ðàçäåëåíè íà 3 ãðóïè ïî 5
ðàñòåíèÿ: êîíòðîëà, ëúæëèâî åêñïîíèðàíè è
åêñïîíèðàíè. Ëúæëèâî åêñïîíèðàíèòå è åêñïîíèðàíèòå
ðàñòåíèÿ ñà ïîñòàâÿíè â êàìåðàòà 30 min ñëåä íà÷àëîòî
íà òúìíèÿ ïåðèîä çà 1 ÷àñ íà äåí îò ïúðâèÿ äåí ñëåä
òÿõíîòî çàñàæäàíå äî 14-òèÿ äåí. Åêñïîíèðàíèòå
ðàñòåíèÿ ñà îáëú÷âàíè â ïðîäúëæåíèå íà 14 äíè ïî 1
÷àñ íà äåí ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà 42,6
V/m íà 947,5 MHz íåïðåêúñíàòî ÅÌÏ, êîåòî ñèìóëèðà
èçëú÷âàíå îò ÁÑ â ÷àñ ïèê. ÁÑ èçëú÷âàò ñ ìàêñèìàëíà
ìîùíîñò â ïåðèîäà ñ íàé-ãîëÿì òðàôèê (÷àñ ïèê), êîéòî
å ñúñ ñðåäíà ïðîäúëæèòåëíîñò 1 ÷àñ íà äåí. Ïðåç òîçè
ïåðèîä èçëú÷âàíåòî å ïðàêòè÷åñêè íåïðåêúñíàòî.
Íàïðàâåíè ñà 4 ïîâòîðåíèÿ. Åíçèìíàòà àêòèâíîñò å
îïðåäåëÿíà ñëåä ïîñëåäíîòî îáëú÷âàíå.
Îïðåäåëÿíå íà åíçèìíà àêòèâíîñò
Àêòèâíîñòòà íà èçîöèòðàò äåõèäðîãåíàçà
(ÈÖÄÕ; EC 1.1.1.42), ãëþêîçî-6-ôîñôàò äåõèäðîãåíàçà
(Ã-6-ÔÄÕ, EC 1.1.1.49) è ìàëèê åíçèì (EC 1.1.1.40) å
îïðåäåëÿíà ïî ñêîðîñòòà íà ðåäóöèðàíå íà NADP+ [Van
Assche, 1988].
Êàòàëàçàòà (EC 1.11.1.6) êàòàëèçèðà
äèñìóòàöèÿòà íà âîäîðîäíèÿ ïåðîêñèä âúâ âîäà è
êèñëîðîä. Àêòèâíîñòòà é å îïðåäåëÿíà ïî ñêîðîñòòà íà
äèñìóòàöèÿ íà H2O2 [Bergmeyer, 1974].
Ãâàÿêîë ïåðîêñèäàçàòà (ÃÏÎ, EC 1.11.1.7)
êàòàëèçèðà îêèñëÿâàíåòî íà ðàçëè÷íè ñúåäèíåíèÿ ÷ðåç
âîäîðîäåí ïåðîêñèä. Òÿ èçðàçÿâà îáùàòà
(íåñïåöèôè÷íàòà) ïåðîêñèäàçíà àêòèâíîñò íà
ðàñòèòåëíàòà êëåòêà. Àêòèâíîñòòà íà ãâàÿêîë
ïåðîêñèäàçàòà ñå îïðåäåëÿ ïðè èçïîëçâàíå íà ãâàÿêîëà
êàòî åëåêòðîíåí äîíîð. Åäíà åíçèìíà åäèíèöà å
êîëè÷åñòâîòî åíçèì, îáðàçóâàùî 1 μmol òåòðàãâàÿêîë
çà 1 min ïðè 25 °Ñ [Bergmeyer, 1974].
Àñêîðáàò ïåðîêñèäàçàòà (ÀÏÎ, EC 1.11.1.11)
ðåäóöèðà H2O2 äî H2O â õëîðîïëàñòèòå è öèòîïëàçìàòà,
èçïîëçâàéêè àñêîðáèíîâàòà êèñåëèíà êàòî åëåêòðîíåí
äîíîð. Â àíàëèçà å îïðåäåëÿíî îêèñëÿâàíåòî íà
àñêîðáèíîâàòà êèñåëèíà [Gerbling, 1984].
Àêòèâíîñòòà íà åíçèìèòå å èçðàçåíà â åíçèìíè
åäèíèöè íà ãðàì ñâåæî òåãëî ëèñòíà ìàñà (U/g). (Åäíà
åíçèìíà åäèíèöà å êîëè÷åñòâîòî åíçèì, ðàçãðàæäàùî
1 μmol ñóáñòðàò çà 1 min ïðè 25 °Ñ.)
ÐÅÇÓËÒÀÒÈ È ÎÁÑÚÆÄÀÍÅ
ÍÀÄÔ.Í-çàâèñèìè åíçèìè
Íèêîòèíàìèäàäåíèíäèíóêëåîòèäôîñôàò
(ÍÀÄÔ) å øèðîêî ðàçïðîñòðàíåí â ïðèðîäàòà êîåíçèì
íà íÿêîè äåõèäðîãåíàçè. ÍÀÄÔ.H å âàæåí äîíîð íà
åëåêòðîíè â ìíîæåñòâî àíàáîëèòíè ðåàêöèè.
Èçîöèòðàò äåõèäðîãåíàçàòà (ÈÖÄÕ) å åíçèì
îò öèêúëà íà òðèêàðáîíîâèòå êèñåëèíè (öèêúë íà Êðåáñ).
 åóêàðèîòèòå ñå ñðåùà â äâå ôîðìè: ÍÀÄ+-ñâúðçàí
åíçèì (EC 1.1.1.41), íàìåðåí ñàìî â ìèòîõîíäðèèòå, è
ÍÀÄÔ+-ñâúðçàí åíçèì (EC 1.1.1.42), êîéòî ñå íàìèðà â
ìèòîõîíäðèèòå è â öèòîïëàçìàòà. ÈÖÄÕ êàòàëèçèðà
åäíà îò íåîáðàòèìèòå ðåàêöèè â òðèêàðáîíîâèÿ öèêúë
è ïîðàäè òîâà àêòèâíîñòòà ìó òðÿáâà äà áúäå ñòðîãî
ðåãóëèðàíà. Ðàñòèòåëíàòà ÍÀÄÔ-ÈÖÄÕ å ëîêàëèçèðàíà
ïðåäèìíî â öèòîçîëà. Öèòîçîëíàòà ÍÀÄÔ-ÈÖÄÕ å
îñíîâíèÿò êàòàëèçàòîð â îáðàçóâàíåòî íà α-ÊÃ,
íåîáõîäèì çà óñâîÿâàíåòî íà àçîòà. Òîâà å
ïðåîáëàäàâàùàòà ôîðìà íà åíçèìà â åêñòðàêòè îò
ëèñòà.
112
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Ïðè æèâîòíè, äðîæäè è áàêòåðèè ÍÀÄÔ-ÈÖÄÕ å
îñíîâåí êîìïîíåíò íà àíòèîêñèäàíòíèòå çàùèòíè
ìåõàíèçìè. Çà ðàñòèòåëíèòå êëåòêè èìà ìàëêî
èíôîðìàöèÿ çà àíòèîêñèäàíòíèòå ñâîéñòâà íà ÍÀÄÔÈÖÄÕ.
Äàííè, ïîëó÷åíè îò Leterrier et al. [2007], ïîêàçâàò,
÷å â ãðàõîâè ðàñòåíèÿ öèòîçîëíàòà ÍÀÄÔ-ÈÖÄÕ ïîêàçâà
ðàçëè÷åí îòãîâîð â çàâèñèìîñò îò òèïà àáèîòè÷åí ñòðåñ.
Àâòîðèòå ïðåäïîëàãàò, ÷å â ðàñòåíèÿòà òàçè
äåõèäðîãåíàçà ìîæå äà èãðàå çàùèòíà ðîëÿ ñðåùó
íÿêîè ñòðåñîâè ôàêòîðè íà ñðåäàòà.
Ãëþêîçî-6-ôîñôàò äåõèäðîãåíàçàòà (Ã-6-
ÔÄÕ) å öèòîçîëåí åíçèì îò ïåíòîçîôîñôàòíèÿ öèêúë
(ÏÔÖ). Ïðè âèñøèòå ðàñòåíèÿ ñà óñòàíîâåíè íÿêîëêî
èçîôîðìè íà Ã-6-ÔÄÕ, ëîêàëèçèðàíè â öèòîçîëà,
ñòðîìàòà íà ïëàñòèäèòå è â ïåðîêñèçîìèòå. Ã-6-ÔÄÕ å
ñêîðîñò-ëèìèòèðàù åíçèì â ÏÔÖ, êîéòî îïðåäåëÿ
êîëè÷åñòâîòî ÍÀÄÔ.H, êàòî êîíòðîëèðà ìåòàáîëèçìà
íà ãëþêîçàòà â ÏÔÖ.
Ìàëèê åíçèìúò (malate dehydrogenase
(oxaloacetate-decarboxylating) (NADP+), EC 1.1.1.40)
êàòàëèçèðà ïðåâðúùàíåòî íà ÿáúë÷åíàòà êèñåëèíà â
ïèðîãðîçäåíà, ïðè êîåòî ÍÀÄÔ+ ñå ðåäóöèðà äî
ÍÀÄÔ.Í.
ÍÀÄÔ-ìàëèê åíçèìúò (ÍÀÄÔ-ÌÅ) êàòàëèçèðà
äåêàðáîêñèëèðàíåòî íà ìàëàò äî ïèðóâàò è å îòêðèò â
ïî÷òè âñè÷êè òúêàíè è îðãàíè íà Ñ3 ðàñòåíèÿòà – ëèñòà,
åòèîëèðàíè òúêàíè, ñåìåíà, êîðåíè, ïëîäîâå (Edwards
and Andreî, 1992), êàêòî è ïðè Ñ4 ðàñòåíèÿòà (Schnabl,
1981). Íàìèðà ñå â õëîðîïëàñòèòå èëè öèòîïëàçìàòà.
Çàåäíî ñ ôîñôîåíîëïèðóâàòêàðáîêñèëàçàòà ðåãóëèðà
êèñåëèííîñòòà â êëåòêèòå, à â êîìáèíàöèÿ ñ ÍÀÄ-ìàëàò
äåõèäðîãåíàçàòà ó÷àñòâà â ïðåâðúùàíåòî íà ÍÀÄÍ â
ÍÀÄÔ.Í. Èìà ñâåäåíèÿ çà ó÷àñòèåòî íà òîçè åíçèì â
ñòðåñîâèòå îòãîâîðè (Casati et al., 2000).
Íà ôèã. 1 ñà ïðåäñòàâåíè ðåçóëòàòèòå îò
èçìåðåíèòå àêòèâíîñòè íà ÍÀÄÔ.Í-çàâèñèìèòå åíçèìè
ñëåä 14-äíåâíî îáëú÷âàíå íà ãðàõîâè ðàñòåíèÿ ñ ÅÌÏ,
èìèòèðàùî èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ÷àñ ïèê. Íÿìà
ñòàòèñòè÷åñêè äîñòîâåðíè ïðîìåíè â åíçèìíàòà àêòèâíîñò.
Åíçèìè, îáåçâðåæäàùè âîäîðîäåí ïåðîêñèä
Âîäîðîäíèÿò ïåðîêñèä (H2O2) å òîêñè÷åí
ñòðàíè÷åí ïðîäóêò îò êëåòú÷íèÿ ìåòàáîëèçúì. Íåãîâàòà
êîíöåíòðàöèÿ â êëåòêèòå ñòðîãî ñå êîíòðîëèðà è
ïîñòîÿíñòâîòî é å êðèòåðèé çà ïîääúðæàíå íà
õîìåîñòàçàòà. Ïðè âçàèìîäåéñòâèå íà âîäîðîäåí
ïåðîêñèä ñ éîíè íà ïðåõîäíè ìåòàëè ñå ïîëó÷àâà
õèäðîêñèëåí ðàäèêàë, êîéòî å íàé-ðåàêòèâíèÿò ðàäèêàë,
îáðàçóâàù ñå in vivo. Àêòèâíèòå ôîðìè íà êèñëîðîäà
ïðåäèçâèêâàò îêñèäàòèâíè óâðåæäàíèÿ, êîèòî ìîãàò äà
ïðè÷èíÿò ïðåêèñíî îêèñëåíèå íà ëèïèäè, èíàêòèâèðàíå
íà áåëòúöè, ÄÍÊ ìóòàöèè è êëåòú÷íà ñìúðò [Gechev,
2005]. Çà äà ñå ïðåäîòâðàòÿò óâðåæäàíèÿòà, H2O2 òðÿáâà
áúðçî äà ñå ïðåâúðíå â äðóãè, ïî-ìàëêî âðåäíè
ñóáñòàíöèè. Çà òàçè öåë êëåòêèòå èçïîëçâàò åíçèìè –
ïåðîêñèäàçè (EC 1.11.1). Êàòàëàçàòà (EC 1.11.1.6) å
÷åñòî ñðåùàí åíçèì, îòêðèò â ïî÷òè âñè÷êè àåðîáíè
îðãàíèçìè. Òÿ êàòàëèçèðà ïðåâðúùàíåòî íà âîäîðîäíèÿ
ïåðîêñèä âúâ âîäà è êèñëîðîä. Ãâàÿêîë ïåðîêñèäàçàòà
(ÃÏÎ, EC 1.11.1.7) êàòàëèçèðà îêèñëÿâàíåòî íà ðàçëè÷íè
ñúåäèíåíèÿ ÷ðåç âîäîðîäåí ïåðîêñèä. Òÿ èçðàçÿâà
îáùàòà (íåñïåöèôè÷íàòà) ïåðîêñèäàçíà àêòèâíîñò íà
ðàñòèòåëíàòà êëåòêà. Àñêîðáàò ïåðîêñèäàçàòà (ÀÏÎ,
EC 1.11.1.11) îáåçâðåæäà ïåðîêñèäè (H2O2), èçïîëçâàéêè
àñêîðáàò êàòî ñóáñòðàò – ïðåíàñÿ åëåêòðîíè îò
àñêîðáàòà êúì H2O2, ïðè êîåòî ñå ïîëó÷àâàò
äåõèäðîàñêîðáàò è âîäà. ÀÏÎ å âàæåí êîìïîíåíò íà
ãëóòàòèîí-àñêîðáàòíèÿ öèêúë.
0
200
400
600
800
1000
1200
1400
ИЦДХ Г-6-ФДХ
ензимна активност, mU/g FW
Контрола
Лъжливо облъчена
Облъчена
0
1
2
3
4
5
6
Контрола Лъжливо
облъчена
Облъчена
активност на малик ензим, U/g
Ôèã. 1. Àêòèâíîñò íà ÍÀÄÔ.Í-çàâèñèìèòå åíçèìè ñëåä îáëú÷âàíå íà ãðàõ (Pisum sativum) â ïðîäúëæåíèå íà 14 äíè ïî 1
÷àñ íà äåí ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà 42,6 V/m íà 947,5 MHz íåïðåêúñíàòî ÅÌÏ
Fig.1. Activity of NADF.H-dependent enzymes after exposure of pea (Pisum sativum) for 14 days, 1 hour a day with a
homogeneous electric component 42,6 V/m to 947,5 MHz constant EMF
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
113
0
2
4
6
8
10
12
ГПО АПО
ензимна активност, U/g FW
Контрола
Лъжливо облъчена
Облъчена
0
200
400
600
800
Контрола Лъжливо
облъчена
Облъче на
каталазна активност, mU/g
Ôèã. 2. Àêòèâíîñò íà åíçèìèòå, îáåçâðåæäàùè âîäîðîäåí ïåðîêñèä, ñëåä îáëú÷âàíå íà ãðàõ (Pisum sativum) â
ïðîäúëæåíèå íà 14 äíè ïî 1 ÷àñ íà äåí ñ õîìîãåííà åëåêòðè÷íà êîìïîíåíòà 42,6 V/m íà 947,5 MHz íåïðåêúñíàòî ÅÌÏ
Fig.2. Activity of enzymes disposal hydrogen peroxide, after exposure of pea (Pisum sativum) for 14 days, 1 hour a day with a
homogeneous electric component 42,6 V/m to 947,5 MHz constant EMF
Ñëåä 14-äíåâíî îáëú÷âàíå íà ãðàõîâè
ðàñòåíèÿ ïðåç òúìíèÿ ïåðèîä ñ ÅÌÏ, èìèòèðàùî
èçëú÷âàíå îò áàçîâà ñòàíöèÿ â ÷àñ ïèê, íÿìà
ñòàòèñòè÷åñêè äîñòîâåðíè ïðîìåíè â åíçèìíàòà
àêòèâíîñò è íà ïåðîêñèäàçèòå (ôèã. 2).
Òåçè ðåçóëòàòè ñà â ïðîòèâîðå÷èå ñ ðåçóëòàòèòå
íà äðóãè àâòîðè, ñúîáùàâàùè çà ïðîìÿíà â àêòèâíîñòòà
íà ðàçëè÷íè åíçèìè ïîä äåéñòâèå íà 900 MHz ÅÌÏ. Òîâà
ìîæå äà ñå äúëæè íà íÿêîëêî ïðè÷èíè. Îáëú÷âàíåòî
íå å åäíîêðàòíî, à ïðîäúëæèòåëíî – 14 äíè, è
ðàñòåíèÿòà èìàò âðåìå äà ñå àäàïòèðàò êúì
ïðèëàãàíîòî ÅÌÏ. Â ïðåäèøíèòå íàøè åêñïåðèìåíòè
èçïîëçâàíîòî èìïóëñíî 900 MHz ÅÌÏ, èçëú÷âàíî îò
ìîáèëåí òåëåôîí, ìîäèôèöèðà åíçèìíàòà àêòèâíîñò
[Kouzmanova 2009, Dimitrova, 2008]. Â íàñòîÿùèÿ
åêñïåðèìåíò ÅÌÏ, ñèìóëèðàùî èçëú÷âàíå îò áàçîâà
ñòàíöèÿ â ÷àñ ïèê, å íåïðåêúñíàòî è ðàñòåíèÿòà ñà
èçëîæåíè ñàìî íà åëåêòðè÷íàòà êîìïîíåíòà.
Èìïóëñíèòå ÅÌÏ ñà áèîëîãè÷íî ïî-åôåêòèâíè îò
ïîñòîÿííèòå. Ëèïñàòà íà åôåêò ìîæå äà ñå äúëæè íà
ðàçëè÷íèòå óñëîâèÿ íà âúçäåéñòâèå – âðåìå íà
âúçäåéñòâèå, ïàðàìåòðè íà ÅÌÏ.
ÇÀÊËÞ×ÅÍÈÅ
Ïîëó÷åíèòå ðåçóëòàòè ïîêàçâàò, ÷å
îáëú÷âàíåòî íà ãðàõîâè ðàñòåíèÿ â ïðîäúëæåíèå íà 14
äíè ïî 1 ÷àñ íà äåí ïðåç òúìíèÿ ïåðèîä ñ õîìîãåííà
åëåêòðè÷íà êîìïîíåíòà 42,6 V/m íà 947,5 MHz
íåïðåêúñíàòî ÅÌÏ, ñèìóëèðàùî èçëú÷âàíåòî îò áàçîâà
ñòàíöèÿ â ÷àñ ïèê, íå ïðåäèçâèêâà èçìåíåíèÿ â
àêòèâíîñòòà íà äèõàòåëíè è àíòèîêñèäàíòíè åíçèìè â
ëèñòàòà.
ËÈÒÅÐÀÒÓÐÀ
Beaubois, E., S. Girard, S. Lallechere, E. Davies, F.
Paladian, P. Bonnet, G. Ledoigt, A. Vian, 2007.
Intercellular communication in plants: evidence for two
rapidly transmitted systemic signals generated in
response to electromagnetic field stimulation in tomato.
– Plant Cell Environ; 30 (7) 834-844.
Bergmeyer, H.U., K. Gawehn, M. Grassl, 1974. Enzymes
as biochemical reagents. – In: H. U. Bergmeyer (Ed),
Methods in Enzymatic Analysis, Academic Press, New
York, 425-522.
Casati, P., M. V. Lara, C. S. Andreo, 2000. Induction of a
C4-like mechanism of CO2 fixation in Egeria densa, a
submerged aquatic species. – Plant Physiol., 123, 1611-
1621.
Gechev, Ts.S., J. Hille, 2005. Hydrogen peroxide as a signal
controlling plant programmed cell death. – The Journal
of Cell Biology, 168(1):17-20.
Gerbling, K. P., J. K., Grahame, K. H. Fischer, E. Latzko,
1984. Partial purification and properties of soluble
ascorbate peroxidase from pea leaves. – J. Plant
Physiol, 115, 59-67.
Dimitrova, Ì., D. Dragolova, M. Kouzmanova, 2009.
Alternation in enzyme activities in leaves afterexposure
of wheat plants (Triticum Aestivum) to 900 MHz
electromagnetic fields. – In: Biotechnology, Series F,
Special volume, 2nd Int. Symp. “New Researches in
Biotechnology”, Bucharest, 309-316.
Edwards, G. E., C. S. Andreo, 1992. NADP – malic enzymes
from plants. – Phytochemistry, 31, 1845-1857.
114
Agricultural University - Plovdiv AGRICULTURAL SCIENCES Volume II Issue 4 2010
Kouzmanova, Ì., M. Dimitrova, D. Dragolova, G. Atanasova,
N. Atanasov, 2009. Alterations in enzymeactivities in
leaves after exposure of Plectranthus sp. plants to 900
MHz electromagnetic field. – Biothechnology and
Biotechnological Equipment Special Edition, 23 (2):611-
615.
Leterrier, M., L.A Del Río., F.J. Corpas, 2007. Cytosolic
NADP-isocitrate dehydrogenase of pea plants: genomic
clone characterization and functional analysis under
abiotic stress conditions. – Free Radic Res, 41(2):191-
199.
Magone, I., 1996. The effect of electromagnetic radiation
from the Skrunda Radio Location Station on Spirodela
polyrhiza (L) Schleiden cultures. – Sci Total Environ;
180 (1)75-80.
Roux, D., A. Vian, S. Girard, P. Bonnet, F. Paladian, E.
Davies, G. Ledoigt 2008. High frequency (900 MHz) low
amplitude (5 V m”1) electromagnetic field: a genuine
environmental stimulus that affects transcription,
translation, calcium and energy charge in tomato. –
Planta, 227 (4), 883-891.
Schnabl, H., 1981. The compartmentation of carboxylating
and decarboxylating enzymes in guard cell protoplasts.
– Planta 152, 307-313.
Sharma, V.P., H.P. Singh, R.K. Kohli, D.R. Batish, 2009.
Mobile phone radiation inhibits Vigna radiata (mung
bean) root growth by inducing oxidative stress. – Sci
Total Environ, 407:5543-5547.
Sharma, V.P., H.P. Singh, D.R. Batish, R.K. Kohli, 2010.
Cell phone radiations affect early growth of Vigna radiata
(mung bean) through biochemical alterations. – Z.
Naturforsch C; 65 (1-2): 66-72.
Tafforeau, M., M.C. Verdus, V. Norris, G.J. White, M. Cole,
M. Demarty, M. Thellier, C. Ripoll, 2004. Plant sensitivity
to low intensity 105 GHz electromagnetic radiation. –
Bioelectromagnetics; 25 (6), 403-407.
Òîâà èçñëåäâàíå å ôèíàíñèðàíî îò Ñîôèéñêèÿ
óíèâåðñèòåò „Ñâ. Êë. Îõðèäñêè”, äîãîâîð çà
íàó÷íè èçñëåäâàíèÿ ¹ 007/30.03.2010 ã.
Ñòàòèÿòà å ïðèåòà íà 12.07.2010 ã.
Ðåöåíçåíò – äîö. ä-ð Çëàòêî Çëàòåâ
E-mail: zl_zlatev@abv.bg
Tkalec, M., K.Malaric, B.Pevalek-Kozlina, 2005. Influence
of 400, 900, and 1900 MHz electromagnetic fields on
Lemna minor growth and peroxidase activity. –
Bioelectromagnetics, 26 (3) 185-193.
Tkalec, M., K.Malaric, B.Pevalek-Kozlina, 2007. Exposure
to radiofrequency radiation induces oxidative stress in
duckweed Lemna minor L. – Science of the Total
Environment, 388, 78-89.
Van Assche, F., C. Cardinaels, H. Clijsters, 1988. Induction
of enzyme capacity in plants as a result of heavy metal
toxicity: doze-response relations in Phaseolus vulgaris
L., treated with zinc and cadmium. – Environm. Poll.,
52, 103-115.
Vian, A., D. Roux, S. Girard, P. Bonnet, F. Paladian, E.
Davies, G. Ledoigt, 2006. Microwave Irradiation Affects
Gene Expression in Plants. – Plant Sign Behav; 1 (2)
67-70.
Àãðàðåí óíèâåðñèòåò - Ïëîâäèâ ÀÃÐÀÐÍÈ ÍÀÓÊÈ Ãîäèíà II Áðîé 4 2010
115
Îðèãèíàëíèòå íàó÷íè ñòàòèè â ñïèñàíèå Àãðàðíè íàóêè (Àgricultural Sciences) çàäúëæèòåëíî òðÿáâà äà ñúäúðæàò
ðåçþìå, âúâåäåíèå, ìàòåðèàë è ìåòîäè, ðåçóëòàòè, îáñúæäàíå, èçâîäè è ëèòåðàòóðà.
Ðåçþìå – íà áúëãàðñêè è íà àíãëèéñêè, òðÿáâà äà îòðàçÿâà â ìàêñèìàëíî ñáèòà ôîðìà (äî 15 ðåäà èëè 200 äóìè)
öåëòà íà èçñëåäâàíå, åêñïåðèìåíòàëíèòå ìàòåðèàëè è ìåòîäè, îñíîâíèòå ðåçóëòàòè è èçâîäèòå.
Êëþ÷îâè äóìè – äî 5, íà áúëãàðñêè è íà àíãëèéñêè.
Âúâåäåíèå - îáîñíîâàâà íåîáõîäèìîñòòà îò ïðîâåäåíèòå èçñëåäâàíèÿ íà ôîíà íà íàé-ñúâðåìåííèòå ëèòåðàòóðíè
äàííè ïî äàäåíèÿ ïðîáëåì, ôîðìóëèðàò ñå ðàáîòíàòà õèïîòåçà è ïîñòàâåíèòå öåëè.
ßñíî è òî÷íî ñå îïèñâàò èëè öèòèðàò èçïîëçâàíèòå ìàòåðèàëè è ìåòîäè.
 ðàçäåëà ðåçóëòàòè ñå ïðåäñòàâÿò îðèãèíàëíèòå ðåçóëòàòè îò ïðîó÷âàíåòî, êîèòî ïðåäñòàâëÿâàò çíà÷èòåëåí ïðèíîñ
â ðàçâèòèåòî íà íàóêàòà. Èçáÿãâà ñå ïîäðîáíîòî îïèñàíèå íà ïúðâè÷íè è ñòàòèñòè÷åñêè íåîáðàáîòåíè äàííè.
Îáçîðíèòå ñòàòèè òðÿáâà äà ðàçãëåæäàò àêòóàëíè è íàó÷íîçíà÷èìè ïðîáëåìè â ðàçëè÷íè íàó÷íè íàïðàâëåíèÿ è äà
ñúäúðæàò èç÷åðïàòåëåí è çàäúëáî÷åí àíàëèç íà íàøèòå è ñâåòîâíèòå ïîñòèæåíèÿ â êîíêðåòíàòà îáëàñò.
 êðàòêèòå ñúîáùåíèÿ (äî 3-4 ñòðàíèöè, âêëþ÷èòåëíî ñ òàáëèöèòå è ñ ôèãóðèòå) ñå äîêëàäâàò îðèãèíàëíè ðåçóëòàòè
çà ñúçäàäåíè íîâè ñîðòîâå, íîâè òåõíîëîãèè èëè íîâè ðàñòèòåëíè ôîðìè è ìåòîäè.
Òåõíè÷åñêî îôîðìëåíèå
1. Ðúêîïèñèòå ñå ïðåäñòàâÿò â ðåäàêöèÿòà â äâà íàïúëíî îêîìïëåêòîâàíè åêçåìïëÿðà è íà äèñê, íàïèñàíè íà ñòàíäàðòíè
ñòðàíèöè ôîðìàò À4, ñ margins 2,4 cm (1 èí÷) îòãîðå, îòäîëó è îòñòðàíè, íà Ariel, size 10, ïðèäðóæåíè ñ ïðîòîêîë îò çàñåäàíèå
íà ïúðâè÷íîòî íàó÷íî çâåíî, íà êîåòî å ïðèåòà ñòàòèÿòà. Ìàòåðèàëèòå òðÿáâà äà áúäàò íàïèñàíè íà MS Word for Windows, a
ôèãóðèòå êàòî ðàñòåðíè èçîáðàæåíèÿ âúâ ôîðìàò *.TIFF, *.JPG (ñ ïîäõîäÿùà çà ïå÷àò ðàçäåëèòåëíà ñïîñîáíîñò).
2. Åçèêîâîòî è ñòèëîâîòî îôîðìëåíèå íà ìàòåðèàëèòå å çàäúëæåíèå è îòãîâîðíîñò íà ñàìèòå àâòîðè.
3. Òèòóëíàòà (çàãëàâíàòà) ñòðàíèöà íà ñòàòèÿòà òðÿáâà äà âêëþ÷âà ñëåäíîòî:
- çàãëàâèåòî íà ñòàòèÿòà (íà áúëãàðñêè è íà àíãëèéñêè) äà áúäå íàïèñàíî êðàòêî, òî÷íî, áåç ñúêðàùåíèÿ è äà ñúäúðæà
íàèìåíîâàíèåòî íà îáåêòèòå íà èçñëåäâàíå (áîëä, ãëàâíè áóêâè); äà ñå èçáÿãâàò ñúêðàùåíèÿ, õèìè÷íè ôîðìóëè, ñèìâîëè è
çàïàçåíè ìàðêè;
- ïîä íåãî ñå èçïèñâàò èçöÿëî èìåòî è ôàìèëèÿòà íà àâòîðèòå (íà áúëãàðñêè è íà àíãëèéñêè, (áîëä, ðåäîâíè áóêâè);
- íàèìåíîâàíèåòî íà èíñòèòóöèÿòà, â êîÿòî ðàáîòÿò (íà áúëãàðñêè è íà àíãëèéñêè);
- ïðè êîëåêòèâíè ñòàòèè ñúñ çâåçäè÷êà ñå ïîñî÷âà àâòîðúò, ñ êîéòî ðåäàêöèÿòà ùå êîðåñïîíäèðà è íåãîâèÿò e-mail
àäðåñ.
4. Çàãëàâèÿòà íà ðàçäåëèòå ñà íàïèñàíè ñ ãëàâíè áóêâè, áîëä.
5. Òàáëèöèòå ñå ïðåäñòàâÿò íà îòäåëíè ôàéëîâå. Çàãëàâèÿòà íà òàáëèöèòå è òåêñòîâàòà ÷àñò â òÿõ ñå èçïèñâàò íà
áúëãàðñêè è íà àíãëèéñêè åçèê.
6. Èëþñòðàöèèòå ñå îôîðìÿò íà îòäåëíè ôàéëîâå è òðÿáâà äà áúäàò èçðàáîòåíè ñ äîñòàòú÷íî âèñîêî êà÷åñòâî è âèä,
êîéòî ïîçâîëÿâà òÿõíîòî äèðåêòíî èçïîëçâàíå çà ïå÷àò. ×àñòèòå íà ñúñòàâíèòå ôèãóðè ñå îçíà÷àâàò ñ ìàëêè ëàòèíñêè áóêâè (à,
â, ñ ...). Çàãëàâèÿòà íà ôèãóðèòå ñå èçïèñâàò íà áúëãàðñêè è íà àíãëèéñêè åçèê.
7. Èçïîëçâà ñå Ìåæäóíàðîäíàòà ñèñòåìà îò èçìåðèòåëíè åäèíèöè SI. Ïðè èçïèñâàíå íà äðîáè ñå èçïîëçâà äåñåòè÷íàòà
çàïåòàÿ, à íå òî÷êà.
8. Ïðè öèòèðàíå âúòðå â òåêñòà ñå ïîëçâà ñòàíäàðòúò èìå - ãîäèíà. Àêî çà äàäåíà òåçà ñå ïðèâåæäàò íÿêîëêî öèòàòà,
òå ñå ïîäðåæäàò â õðîíîëîãè÷åí ðåä. Öèòèðàíåòî íà àâòîðèòå äà ñòàâà ñ èìåòî íà àâòîðà (áåç èíèöèàë çà ïúðâîòî èìå) è
ãîäèíàòà. Íàïðèìåð „...ñïîðåä Ðàíêîâ (1980)...”; ”Òîâà å â ñúãëàñèå ñ óñòàíîâåíîòî îò äðóãè àâòîðè (Ïåòðîâ, 1990), (Wayland
and Rieger, 1991)”. Ïðè öèòèðàíå íà îòäåëíè ñòðàíèöè îò êíèãà òîâà ñå ïîñî÷âà â òåêñòà íà ñòàòèÿòà. Íàïðèìåð „...Ñïîðåä
Êramer et al. (1993 ðð. 725-736)”.
9.  ñïèñúêà íà ïîëçâàíàòà ëèòåðàòóðà ñå âêëþ÷âàò âñè÷êè àâòîðè è çàãëàâèÿ, çà êîèòî â òåêñòà èìà îòïðàâêè.
Ïúðâî àâòîðèòå íà êèðèëèöà, ñëåä òîâà íà ëàòèíèö&#